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ABSTRACT 

Climate change has increased the frequency of large floods in rivers draining the Ozark 

Highlands resulting in higher rates of channel sedimentation, bank erosion, and damage to 

infrastructure. This study assesses the effects of a large flood (>500-year RI) during April-May 

2017 on riparian forests along six tributary streams in the North Fork of the White River 

watershed, Missouri. High-resolution (<8 cm) Unmanned Aerial Vehicle (UAV) imagery 

collected after the flood was used to identify riparian forest flood damage. Measurements of 

riparian forest flood damage calculated from the UAV imagery were verified through field 

surveys of damaged riparian trees. Geomorphic variables of valley confinement, sinuosity, 

substrate, and stream power were evaluated and used to explain the spatial distribution of 

riparian forest flood damage. In total over 1,000 damaged trees were identified at the sample 

reaches and canopy cover was reduced by up to 63%. Regression analysis showed positive 

relationships between riparian forest damage (total volume of damaged trees, volume of 

damaged trees per hectare, and canopy loss) with geomorphic variables such as confinement, 

sinuosity, substrate, and stream power. Mean (R2 = 0.67) and cross-sectional (R2 = 0.90) stream 

power accounted for the greatest percentage of variance in volume of riparian forest damage. 

Riparian forest damage peaked in the reaches with the largest drainage areas. UAVs have the 

potential to accurately assess riparian forest damage due to floods. However, more research on 

UAV measurement errors is needed to better evaluate UAV forest data. This information can be 

used to understand ecological disturbance by floods and inform land management practices in 

Mark Twain National Forest. 
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CHAPTER ONE: INTRODUCTION 

 

Riparian forests grow in the transitional zone between stream and valley (Naiman and 

Decamps, 1997). They provide important geomorphic and ecologic functions in fluvial systems 

such as flood retention (Johnson et al., 2000), bank and floodplain stabilization (Hupp and 

Osterkamp, 1996; Tal et al., 2004), and maintenance of eco-hydrologic regime (Gran and Paola, 

2001). Additionally, riparian forests filter sediments and pollutants and increase biodiversity by 

providing habitat (Raeker et al., 2008). Floods are a significant source of disturbance in riparian 

zones and often control forest structure (Bendix, 1997). Therefore, riparian forests reflect a 

balance between flood disturbance and recovery, where the spatial distribution of riparian 

vegetation is limited by the frequency, magnitude, and duration of streamflow (Hupp and 

Osterkamp, 1996). Given the strong relationship between flood regime and riparian forest 

growth, there are increasing concerns of flood risks from climate change. Climate change models 

around the world have found increases in the frequency of high flow events, seasonal runoff, and 

flow variability by season and geographic location (Chang et al., 2002; Andréasson et al., 2004). 

Increases in flood frequency, mean flow, and flow variability have also been modeled in the 

northeastern United States since the 1990s (Poff et al., 1996). Due to the potential damage that 

can be caused by floods, these changes in hydrology threaten riparian forests (Swanson et al., 

1998; Johnson et al., 2000; Garssen et al., 2017).  

It is well known that large floods can cause extreme geomorphic changes to fluvial 

systems through rapid channel erosion, excessive sediment transport, and debris flows (Phillips, 

2002; Morche et al., 2007; Fuller, 2008; Borga et al., 2014). A 100-year flood on a wandering 

river in New Zealand, caused a five-fold increase in active channel width and a six-fold increase 
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in bar area (Fuller, 2008). A 40-year flood event in an alpine river (17 km2) eroded more than 

100,000 tons of sediment, causing large scale channel changes and sedimentation downstream 

(Morche et al., 2007). However, the geomorphic effects of large floods can vary. In a study on a 

200-year flood in Hungry Mother Creek (17 km2), Virginia, channel incision and bank erosion 

were common, however the geomorphic impacts of the flood were minimized due to the 

dominantly forested land use of the watershed and the timing of the flood during peak vegetation 

cover in the summer (Phillips, 2002).   

Forest damage from flooding refers to the removal, toppling, and/or mortality of 

vegetation, with effects varying between lowland and highland watersheds (Swanson et al., 

1998; Johnson et al., 2000; Kozlowski, 2002). Riparian vegetation damage in lowlands typically 

comes from relatively long periods of inundation, which reduce oxygen levels in soils, causing 

biomass loss and root death and decay (Kozlowski, 2002). Prolonged inundation is typical of 

lowland flooding in which the duration of floods can last weeks to months (Swanson et al., 

1998). Garssen et al. (2017) found that in lowland flooding, flood water depth (magnitude) over 

the forest floor increased plant mortality and decreased plant diversity. Whereas riparian forest 

damage in lowland flooding mostly comes from the interaction between flood waters and soil 

conditions/oxygen depletion (Kozlowski et al., 2002; Garssen et al., 2017), riparian forest 

damage along highland streams mainly comes from mechanical damage due to floating wood 

collisions and high stream power which can erode substrate and topple trees (Johnson et al., 

2000). Additionally, it is known that floods in mountainous landscapes are shorter in duration 

(hours to days) and that flood disturbance typically consists of debris flows, scoured channels, 

and floating woody debris (Swanson et al., 1998).  
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Floods can cause tree damage through direct contact with the hydraulic force of the flow 

and through collisions with floating wood or falling trees (Swanson et al., 1998; Johnson et al., 

2000). Trees may become undercut and toppled or uprooted due to substrate failure or floating 

debris impacts (Swanson et al., 1998; Johnson et al., 2000). Swanson et al. (1998) observed a 

large (1.5 m diameter) conifer log topple adjacent riparian trees as it was transported by high 

streamflow. Riparian vegetation cover typically decreases during floods due to an increased 

active channel width (Friedman and Lee, 2002). However, after floods, riparian vegetation cover 

(and/or density) may increase past its initial extent due to increased space and moisture 

availability (Bendix, 1998; Friedman and Lee, 2002; Garssen et al., 2017). There are relatively 

few studies of large flood (>100-year recurrence interval) effects on riparian forests in higher 

relief regions, with a few exceptions (Swanson et al, 1996; Johnson et al., 2000; Friedman and 

Lee, 2002). This study examines the relationship between a large magnitude flood event and 

riparian forest response in the Ozark Highlands region of the Midwest United States.  

 

Potential for UAV Monitoring  

Aerial photographs have been used before to define flooded areas, assess damages, and 

identify flood susceptible areas (Klemas, 2015). Additionally, landforms, forests, and rivers have 

been monitored using aerial photography and photogrammetry as well (Chandler et al., 2002; 

Fujita et al., 2003; Everitt et al., 2010; Dandois et al., 2015; Warrick et al., 2017). Historically, 

aerial photography provided data that could be used to calculate changes in areal extent of 

vegetation (Everitt et al., 2010) and to identify canopy gaps in forests (Fujita et al., 2003). 

However, traditional means of acquiring aerial photographs or other imagery has limitations, 

such as high cost and low spatial resolution (Anderson and Gaston, 2013).  
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Recently, unmanned aerial vehicles (UAVs) have become capable of acquiring high-

resolution images. UAVs provide cost-effective options for collecting high-resolution aerial 

imagery (Quilter and Anderson, 2000). Additionally, UAVs provide several other benefits 

compared to alternatives, UAVs can provide information about inaccessible or hard to reach 

areas, are non-invasive, can be used to detect and measure change, and allow for control of 

survey revisit periods (Quilter and Anderson, 2000; Anderson and Gaston, 2013). Recently, 

UAVs have been used to collect imagery for environmental assessments ranging from beach 

morphology surveys (Jeong et al., 2018) to monitoring stream and riparian restoration projects 

(Quilter and Anderson, 2000). Forest and river characteristics, including; canopy gaps, canopy 

heights, and landforms have been successfully measured with UAV imagery (Dandois and Ellis, 

2010; Getzin et al., 2012; Zahawi et al., 2015; Watanabe and Kawahara, 2016). 

 

Purpose and Objectives 

Most studies of large woody debris and riparian tree effects from flooding in the United 

States have been completed outside of the Midwest, with many focusing on mountain streams in 

the western United States (Swanson et al., 1998; Johnson et al., 2000; Fierke and Kauffman, 

2006; Wohl and Cadol, 2011). Although riparian forests provide important ecologic and 

geomorphic functions critical to maintaining riverine ecosystems (Raeker et al., 2008), no in-

depth studies of the relationship between floods and riparian vegetation/large woody debris have 

been completed in the Ozark Highlands, in the Central United States. Some studies have noted 

that vegetation-landform relationships reflect the geomorphic stability of the channel and the role 

of vegetation in controlling channel form in Ozarks streams (Mckenney et al., 1995). Others 

have shown that the spatial distribution of large woody debris has strong spatial periodicity in 
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some segments of the Big River in the Ozarks (Martin et al., 2018). However, the geomorphic 

variables (sinuosity, meander wavelength, and gravel bar spacing) that were tested showed poor 

relationships with the deposition location for the large wood (Martin et al., 2018). The lack of 

studies on the hydraulic and geomorphic factors which control riparian forest distribution show 

the need for further research and understanding of riparian vegetation and large woody debris in 

the Ozarks. 

There are increasing concern of climate change and flood effects in the Midwest and the 

Ozark Highlands region. Across the Midwest, annual precipitation has increased up to 20% in 

some locations; much of this increase comes from an increase in intensity of heavy rainfall 

events (Pryor et al., 2014). The increase in frequency and intensity of extreme precipitation 

events is expected to continue and produce more frequent floods and flood-related problems 

(Pryor et al., 2014). The recent increase in higher rainfall intensity events has also been observed 

in the Big Barren Creek watershed in the southeast Missouri Ozarks (Pavlowsky et al., 2016). 

Additional studies in the Ozarks have shown that the discharges of both small and large 

recurrence interval floods have been increasing (Foreman, 2014). Increases in extreme 

precipitation can cause increased erosion and sediment transport and damage in riparian 

ecosystems (Pryor et al., 2014). Additionally, the Ozark Highlands region in southern Missouri 

has also been experiencing a significant increase in annual peak discharge since the 1970s 

(Heimann et al., 2018). 

The purpose of this study is to add to our understanding of how extreme floods and 

geomorphic factors affect riparian forests in the Ozark Highlands. The occurrence of an extreme 

flood in April 2017 provided an opportunity to assess patterns of riparian forest damage 

(Heimann et al., 2018). The objectives of this study are to assess the geomorphic setting and 



6 

characteristics of six study reaches in the North Fork of the White River watershed in Southern 

Missouri, use low altitude UAV imagery to assess forest disturbance, and evaluate the influence 

of hydrologic and geomorphic factors on observed patterns of forest disturbance. Geomorphic 

variables such as, basin slope, valley form and confinement, sinuosity, reach slope, channel 

morphology, bed substrate, floodplain features, and hydrology will be used to evaluate the spatial 

distribution forest damage. Stream power, channel planform, floodplain topography, and type of 

tree disturbance will be evaluated for their influence on the patterns of forest damage. The use of 

UAV imagery will also be compared with field measurements to assess the capabilities of UAVs 

in acquiring accurate quantitative data on riparian forest damage.  

Benefits. This study provides analysis and evaluation of the effects of a rare flood event 

on riparian forests in a region generally lacking previous bio-geomorphic studies (Mckenny et 

al., 1995; Martin et al., 2018). The relationship between floods and flood effects is complex, with 

flood effects varying greatly across stream reaches and watersheds (Bendix, 1997; Swanson et 

al., 1998; Johnson et al., 2000). Understanding of the geomorphic and hydrologic variables that 

generally control flood damage is fairly well documented (Bendix, 1994; Bendix, 1998; Swanson 

et al., 1998; Johnson et al., 2000, Engelhardt et al., 2011), however there are few studies that 

specifically examine the immediate effects of the largest flood on record on riparian forests. This 

type of research is also important since large floods can cause billions of dollars’ worth of 

damages to property and infrastructure (Pryor et al., 2014). Knowing the variables that control 

large flood effects can inform land management decisions and potentially reduce flood damage 

to properties and infrastructure. This study will further our understanding of the relationship 

between riparian forests and large floods and more broadly about the increasing risks of floods 

due to climate change. 
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Study Area 

The North Fork of the White River (3,600 km2) is located in south-central Missouri and 

flows south into Norfolk Lake in north-central Arkansas (Fig. 1). The majority of the watershed 

is in the counties of Ozark, Douglas, and Howell in Missouri (Miller and Wilkerson, 2001). The 

present day land use of the North Fork River watershed consists mostly of forest (62.7%) and 

pastureland (28.3%), with less than 4% covered by urban areas (MRLC, 2016). About 13% of 

the land in the North Fork River watershed is public land, mostly as part of the Mark Twain 

National Forest (Miller and Wilkerson, 2001). Six tributary study sites of the North Fork of the 

White River were examined in this study. All the sites are in western Howell County except for 

one, in eastern Douglas County (i.e. Indian Creek) (Fig. 1).  

Geology and Soils. The North Fork River watershed generally drains horizontally 

bedded sandstones and dolomites of Ordovician and Mississippian age (Miller and Wilkerson, 

2001). Karst features, such as sinkholes, caves, springs, and losing streams are commonly found 

throughout the watershed (Miller and Wilkerson, 2001). Sinkholes are have been mapped in all 

six of the watersheds in this study except at Lick Branch, which has the smallest drainage area 

(4.5 km2) (Duley et al., 2015). Steep ridges and high bluffs are characteristic of Ozarks stream 

systems with up to 200 m in relief (Jacobson and Primm, 1997). High relief can contribute to 

increased runoff rates, flood energy, and riparian damage. Upland soils in the North Fork River 

watershed are primarily formed in the weathered residuum of limestone and dolomite bedrock 

and overlying thin loess deposits, when present (Miller and Wilkerson, 2001). Upland soils 

formed in Pleistocene glacial loess deposits make up 11% of the combined areas of the six 

tributary watersheds studied (USDA, 2005; USDA, 2006). Soils range from deep to shallow, 

moderately well drained to excessively well drained, are loamy and contain large amounts of 
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chert fragments in the subsoil (Miller and Wilkerson, 2001). Chert fragments in soils of the 

North Fork River watershed vary from 0-85% (USDA, 2005; USDA, 2006). Depth to bedrock 

ranges from 0.5 m to greater than 1.5 m (USDA, 2005; USDA, 2006).  

Ozark’s Forest History. The Ozark Highlands have a long history of forest exploitation 

and management within the Mark Twain National Forest. In the 1850s, relatively large areas of 

shortleaf pine forest (230 – 340 km2) were logged along tributaries of the North Fork River in 

Ozark, Douglas, and Howell County (Sauer, 1920). These “pineries” yielded logs 24-27 m in 

length and up to 1.2 m in diameter (Sauer, 1920). Between 1880 and 1920, pine logging and 

timber production peaked in the Ozarks, with oak and other hardwoods harvested after pine was 

depleted (Jacobson and Gran, 1999). Logging and agricultural practices disturbed Ozarks 

streams by increasing runoff, tributary stream erosion, and releasing large amounts of gravel to 

streams causing instability, bank erosion, and habitat degradation (Jacobson and Gran, 1999; 

Martin and Pavlowsky, 2011). These disturbance reaches tend to intensify flood effects on 

riparian forests because they are areas of channel instability with higher rates of erosion and 

sedimentation (Mckenney et al., 1995). In the 1930s, land management began in the North Fork 

River watershed with the creation of the Mark Twain National Forest System (Miller and 

Wilkerson, 2001). 

Ozark’s Riparian Forest Composition. Pre-settlement forest composition of the Ozarks 

and the North Fork River watershed was mostly oak-pine forest (Sauer, 1920; Raeker et al., 

2008). The current composition is now mostly oak-hickory with some oak-pine forest (Raeker et 

al., 2008; Lyons and Sager, 1998). The dominant canopy species are shortleaf pine, oak, and 

hickory (Stambaugh et al., 2002). The five most common canopy species inventoried along 

several transects during this study were White Oak (Quercus alba) (43%), Shortleaf Pine (Pinus 
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echinata) (10%), American Sycamore (Platanus occidentalis) (9%), other oak species (9%), and 

White Ash (Fraxinus americana) (7%). All of these species (except the shortleaf pine) have been 

used to restore riparian areas in the Ozarks (Steele et al., 2013).  

Climate. The average annual precipitation in the North Fork River watershed was 110 

cm for the period of 1946 to 1995, with the maximum annual precipitation of 166 cm and a 

minimum of 52 cm (Miller and Wilkerson, 2001). The annual precipitation in nearby West 

Plains, MO in 2018 was 132 cm (MRCC, 2019). The spring and early summer months of April, 

May, and June typically receive the most precipitation, while December, January, and February 

receive the least (Miller and Wilkerson, 2001). Average temperatures in the Midwest, have been 

increasing by 0.06 degrees Celsius per year from 1900-2010 (Andresen et al., 2012). 

Additionally, average annual precipitation has been increasing over time in the Midwest 

(Andresen et al., 2012) and in the North Fork River watershed (Miller and Wilkerson, 2001). In 

the North Fork River watershed, average annual precipitation has increased 6.5 cm when 

comparing the years 1946-1970 and 1971-1995 (Miller and Wilkerson, 2001). The frequency of 

daily precipitation events greater than two inches has also increased across the Midwest from 

1985 to 2014 (Heimann et al., 2018).  

Occurrence of a >500-year Flood. On April 28-April 30, 2017, a large storm system 

moved across the Midwest recording heavy rainfall across southern Missouri (US Department of 

Commerce, 2017). In the counties of Ozark, Douglas, and Howell (including the North Fork 

River watershed) over a period of 48 hours, 20-30 centimeters of rain fell (Fig. 2) (US 

Department of Commerce, 2017). This led to severe flooding on the North Fork of the White 

River, which destroyed buildings, roads, and bridges. Twenty-one rivers in the Midwest had 

record-breaking peak discharges, including fourteen rivers in southern Missouri and the North 
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Fork River (Heimann et al., 2018; Erdman, 2017). The USGS, recorded the peak discharge of the 

flood event at the North Fork River near Tecumseh, Missouri (USGS stream-gage number 

07057500) at 189,000 cfs, with a peak stage of approximately 13 m and a recurrence interval of 

greater than 500 years (Heimann et al., 2018). 
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Fig. 1. Location of the Six Study Sites 
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Fig. 2. Rainfall Map of Missouri Ozarks During April Storm Event, from the National Weather Service 
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CHAPTER TWO: RIPARIAN FOREST DAMAGE AND PATTERNS 

 

The relationship between flooding and riparian forest damage is poorly understood in the 

Missouri Ozarks. However, previous work on riparian forest damage by floods conducted 

outside of the Midwest provides information on potential geomorphic factors that may contribute 

to tree damage. Valley confinement, channel sinuosity, substrate erosion, and stream power have 

been reported to be significant variables in maximizing the geomorphic effectiveness of floods 

and flood effects on riparian vegetation (Bendix, 1998; Swanson et al., 1998; Bendix and Hupp, 

2000; Johnson et al., 2000). The purpose of this chapter is to assess the post-flood geomorphic 

setting and riparian forest damage along six tributary streams of the North Fork of the White 

River in Missouri (Fig. 1). Specific objectives include: Geomorphic mapping of each sampling 

reach; Assessment of riparian tree damage using UAV imagery and field ground-truthing; and; 

Analysis of the relationship between geomorphic variables and tree damage by size,  location, 

basal area, and volume.  

 

Hydro-Geomorphic Factors of Riparian Forest Damage 

Valley Confinement. Valley confinement is defined by the ratio between valley width 

(maximum flood-prone area) and bank-full channel width (Nagel et al., 2014). Confined 

channels in mountain streams tend to generate more damage to riparian forests due to the 

constriction of high energy flows compared to unconfined areas where there is greater floodplain 

area and/or secondary channels (Swanson et al., 1998; Johnson et al., 2000). Additionally, Wohl 

and Cadol (2011) found that in confined channels in the Colorado Front Range, wood pieces 

were highly aggregated and had a tendency to form jams. Nagel et al. (2014) classified ratios of 
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<3.8 as confined channels and ratios >3.8 as unconfined channels. However, others define 

confinement as, “the percentage of length of the stream or river channel segment that abuts a 

confining margin on either bank”, such as a valley wall or anthropogenic margin (Fryirs et al., 

2016).  

Sinuosity. Sinuosity measures bends in the stream channel and is defined as the length of 

the channel reach along the thalweg divided by the straight-line distance between the start and 

endpoint of the reach (Leopold and Wolman, 1957). Forest damage is typically increased at 

channel bends compared to straight sections. Bends in the stream channel allow for overbank 

flows to directly enter riparian forests and maximize bank/substrate erosion rates and thus locally 

increasing the supply and quantity of wood that is stored (Nakamura and Swanson, 1994; 

Gurnell et al., 2002). Additionally, bends in the stream channel maximize erosion rates (Leopold 

and Wolman 1957; Hupp and Osterkamp, 1996) and contribute to further damage of riparian 

vegetation by undercutting vegetation on stream banks (Johnson et al., 2000). Fuller (2007) 

found that in the Kiwitea drainage basin in New Zealand, confinement of flood flows at bends in 

the stream enhanced stream power and thus the tendency for major geomorphic adjustment. 

Additionally, jams of large woody debris have been found to form on the outside bends of 

channels during over-bank flooding (Nakamua and Swanson, 1994; Gurnell et al., 2002).  

Secondary channels/chutes influence the accumulation and storage of large wood debris 

(riparian forest damage) (Nakamura and Swanson, 1994). Chutes develop on floodplains during 

overbank flows when there is enough energy to erode floodplain sediments (Harrison et al., 

2015). Chutes typically form along sinuous reaches, in areas downstream from bends in the 

channel (Harrison et al., 2015). In this study, chutes were located downstream from channel 

bends on floodplains (Fig. 3a, 3b, 3c) and within backswamp positions along valley margins 
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(Fig. 3c and 3d). Deposition locations for large woody debris are influenced by chute locations 

(Nakamura and Swanson, 1994). Storage of large woody debris typically occurs at the entrance 

of and within the secondary channels/chutes (Nakamura and Swanson, 1994). Large woody 

debris typically accumulates on the outer bends of secondary channels/chutes, just as it does on 

the main channel (Gurnell et al., 2002). Nakamura and Swanson (1994) found that reaches with 

chutes had almost twice the wood debris density of single channel reaches. Since overbank flows 

that create chutes are erosive (Harrison et al., 2015), it is logical to assume that where chutes 

occur and direct flood waters may have more riparian forest damage due to erosion and impacts 

of large woody debris (Johnson et al., 2000). Lick Branch and Upper Tabor Creek were the only 

sites that did not have chutes in the sample reach (Fig. 3e and 3f).  

Substrate. Vegetation can be damaged by the erosion of sediment deposits on landforms 

in which they are growing (Bendix and Hupp, 2000). Thus areas where the substrate is easily 

erodible and mobilized by floods have greater potential for riparian forest flood damage. High 

energy streamflow can erode streambanks removing the soil where the roots of trees are located, 

thus potentially toppling, killing, removing and/or severely damage trees (Johnson et al., 2000; 

Hupp and Bornette, 2005). Streambank erosion supplies wood to streams by mobilizing large 

woody debris on the banks and undercutting standing vegetation (Murphy and Koski, 1989; 

(Piégay et al., 1998; Johnson et al., 2000). In a study on the flood effects of a 40-year flood 

event, Morche et al. (2007) found that large woody debris in the stream was mainly supplied by 

eroded streambanks. Bendix (1998) suggests that even in flood resistant species, substrate 

erosion may be a more important factor of flood damage than the flood resistant attributes of the 

species.  
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Only three different soil series are mapped for the sample reaches in this study, with most 

of the sites covered by only one soil series (USDA, 2005; USDA, 2006) (Table 1). Given that the 

soil properties are very similar among the series, potential rates of substrate erosion may 

generally not vary much among these sites (Table 1). Thus this variable is probably not useful in 

sorting out differences in substrate resistance to flood damage at the site-scale used in this study. 

Alluvial soil series at the sites range from gravelly sandy loam to silt loam and contain relatively 

large percentages of gravel (USDA, 2005; USDA, 2006) (Table 1).  

Stream Power. In forested mountain streams, Johnson et al. (2000) found that riparian 

vegetation interactions with geomorphic processes were increased due to high stream power, 

sediment transport, and large quantities of wood. Stream power can be calculated as cross-

sectional (W/m) and mean (W/m2). Cross-sectional stream power refers to the sediment transport 

capacity of the flow and mean stream power refers to the transport competency of the flow (Bull, 

1979; Lecce, 1997). Cross-sectional stream power is calculated using the specific weight of the 

fluid, discharge, and slope (Bull, 1979; Lecce, 1997). Mean stream power is calculated using the 

specific weight of fluid, the hydraulic radius, flow velocity, and slope (Lecce, 1997).  Both 

measurements of stream power relate to the geomorphic work that can be achieved by the 

streamflow. However, mean stream power has been used before to test the relationship between 

flood damage and riparian species distribution and is a suitable measure of the possible flood 

damage to riparian vegetation (Bendix, 1999).  

Stream power indicates the force of the water acting on the vegetation as well as the 

impacts of sediment and debris encountering vegetation and potentially damaging it (Bendix, 

1999). Channel areas where stream power is relatively high are more sensitive to floods since 

there is more energy available to do geomorphic work (Engelhardt et al., 2011). Increased stream 
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gradient typically increases stream power (Bendix, 1997) and reaches generating greater stream 

power during large floods have more tree damage and decreased vegetation cover (Bendix, 1994; 

Engelhardt et al., 2011). Additionally, stream power typically increases downstream with 

increases in discharge (Graf, 1983). However, Lecce (1997) showed that cross-sectional and 

mean stream power peaked in drainage areas between 10-100 km2 in the Blue River watershed, 

in southwestern Wisconsin. The geology and soils of southwestern Wisconsin are similar to the 

North Fork River watershed, therefore this finding suggests that reaches with relatively high 

discharge in intermediate drainage areas may produce the greatest rates of riparian forest damage 

in the Ozark Highlands.  

 

Study Area 

Six sites on tributaries of the North Fork River were selected based on the location of the 

highest rainfall amounts, Mark Twain National Forest access, and sampling across variable 

drainage area (Fig. 1). The six sites selected for analysis and drainage area are as follows: Dry 

Creek (124.2 km2), Indian Creek (101.6 km2), Lower Tabor Creek (65.4 km2), Upper Tabor 

Creek (54.0 km2), Spring Branch (49.1 km2), and Lick Branch (4.5 km2) (Table 2). Forested land 

use is the majority land use at each site except for Upper Tabor Creek, which has agriculture as 

the primary land use (Table 2). A total of three alluvial soils series are present at the sites, with 

one soil series covering all of the valley bottom at all the sites except at Dry Creek (USDA, 

2005; USDA, 2006) (Table 1). The alluvial soil series range from young and thin entisols on 

floodplains to more developed alfisols on terraces and alluvial fans (USDA, 2005; USDA, 2006). 

The alluvial soils at each site range from 10-96% sand and 0-85% gravel (USDA, 2005; USDA, 
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2006). Surface soil was typically less gravelly sandy loams and silt loams, while the subsoil 

contained more gravelly loamy sands and clays (USDA, 2005; USDA, 2006) (Table 1). 

 

Methods 

Field Methods. Geomorphic assessments were completed at each site in September, 

2017. Sample reaches were divided by 11 transects, each spaced at approximately two bankfull 

channel widths apart. Locations of geomorphic features (channel, floodplain, chute, terrace, and 

tributaries) were recorded using Trimble GPS units. High water marks were also noted, and were 

used estimate the flood level (Morche et al., 2007). Pebble counts were completed at riffles, 

glides, and bars at each site in order to determine the sediment distribution of channel deposits. 

Pebble counts were conducted perpendicular to the stream at riffles generally following 

procedures outlined by Wolman (1954). Blind sampling of the sediment was achieved by 

measuring the first piece of sediment that the index finger touched while not looking at the 

ground. The b-axis of the sediment was then measured with a gravelometer and recorded. This 

process was continued across the stream until reaching the other bank, and then continued in a 

grid pattern across the riffle. Typically five transects were sampled across the channel unit at 2 m 

spacing within a specific channel unit to collect 30 samples.  

Topographic surveys using an auto-level and pulled tapeline were completed at one to 

two valley cross-sections at each sampling reach in September of 2018 to measure channel 

dimensions, floodplain and terrace elevation, and landform locations (Rosgen, 1996). 

Longitudinal profiles were completed to calculate reach slopes and channel bedforms (Rosgen, 

1996). The slopes and valley/channel characteristics were then used to model flows and estimate 

discharge and stream power. 



19 

Field tallies of riparian trees and their attributes were conducted in April, 2019 at each 

site along the same cross-valley transects surveyed in September, 2018. The transect was used as 

a baseline for a 5 m wide sampling zone of all damaged and standing riparian trees (Katz et al., 

2005). Standing tree diameter was recorded in order to calculate basal area per the sampling 

zone. Damaged trees were recorded as toppled or uprooted (Everham and Brokaw, 1996; 

Swanson et al., 1998; Johnson et al., 2000). Damaged tree length and diameter were recorded in 

order to estimate the volumes of the wood in the zone and to compare with measurements 

derived from the UAV imagery. Additionally, orientation and some species identification data 

were recorded.  

Geospatial Data Collection and Analysis Methods. For this study, a combination of 

UAV flight plans were used to generate orthophotos and Digital Surface Models (DSMs) of each 

site. UAV imagery was obtained once during the leaf-on season (September 2017) and once 

during the leaf-off season (March 2018). The UAV imagery and GPS data points of geomorphic 

features were uploaded into ArcMap and used to create geomorphic maps and show riparian 

forest damage. The use of aerial photographs and ArcGIS to assess forest damage has been used 

before and is helpful in assessing forest damage (Kupfer et al., 2008). Using the UAV imagery as 

a base-map, shapefiles were created to digitize the locations of bankfull channel boundaries, 

floodplain boundaries, chutes, terraces, and tributaries. Landforms were also identified with the 

help of alluvial soil data (USDA, 2005; USDA, 2006) and DEMs (Martin and Pavlowsky, 2011). 

Additionally, vegetation lines on the banks of the channels were used to help delineate the 

channel (Vanlooy and Martin, 2005).  

Damaged and standing riparian trees were identified and assessed using the UAV 

imagery. Tree condition in forest surveys is usually considered as standing or toppled (Swanson 
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et al., 1998; Johnson et al., 2000) but can be further classified as uprooted or broken (Everham 

and Brokaw, 1996). Tree toppling is an important forest damage attribute because a 45 degree 

lean has been found to be a critical point for survival (Brewer and Linnartz, 1973). The angle of 

leaning trees could not be measured in the UAV imagery, so toppled trees were identified in the 

UAV imagery by using the shadows of the trees and comparing them to the angles of shadows of 

adjacent standing trees. Uprooted riparian trees were identified by looking for exposed rootwads 

or tree stems that were broken/transported. Damaged riparian trees were given the following 

attributes: condition (uprooted or toppled), azimuth (from rootwad to crown), jam present (yes or 

no), length, diameter, and volume. Azimuth was estimated to see if the damaged tree orientation 

aligned with the adjacent streamflow. Length of the damaged trees was measured from the top of 

the rootwad to the base of the crown. Diameter was measured at the approximate center of the 

visible portion of the tree. Disturbed forest sites also classify damage by the complete removal of 

trees (Johnson et al., 2000), the number or areal percentage downed (Kupfer et al., 2008), and the 

remaining or removed canopy cover (Everham and Brokaw, 1996; Stephens et al., 2008). For 

this study canopy loss was calculated using the leaf-on (September 2017) UAV imagery and 

DSM and comparing it with 2016 leaf-on NAIP imagery.  

Channel Hydraulics and Hydrology. Peak discharge for 2-500 year RI floods were 

estimated using a published regional regression equation with drainage area and basin slope as 

independent variables (Alexander and Wilson, 1995). Basin slope is calculated as the difference 

in elevation at points 10 and 85 percent of the distance along the main channel from the lowest 

end of the stream to the basin divide, divided by the distance between the two points (Alexander 

and Wilson, 1995). Basin slope was calculated using a 10 m resolution DEM. Intelisolve 

Hydraflow Express (2006) software was used to model flows based on observed high water 
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marks and estimated discharges for certain recurrence interval floods through the surveyed cross-

sections and compared to one another. Manning’s n roughness coefficient values were 

determined for each cross-section using Chow (1959). Manning’s roughness coefficients ranged 

from 0.04 -0.06 across channels and bars, 0.1 – 0.12 across floodplains and terraces, 0.06 – 0.085 

across valley floor features with riparian forest damage, 0.04 – 0.10 across chutes, varying with 

the amount of forest damage.  

Geomorphic Channel Analysis. Landform distribution was determined using the 

surveyed valley cross-sections, the UAV DSM imagery, and flow stages modeled through 

Intelisolve Hydraflow Express (2006). The active channel was defined as the bankfull channel 

with the capacity to contain the 1.5 – 2 year RI flood. Floodplain features started from the 

bankfull elevation and ended either at the valley margin or where terrace features began. Terrace 

features where marked as higher elevations than floodplains, usually greater than the 10-year RI 

flood. Sinuosity was calculated as the length of the channel along the thalweg divided by the 

straight-line distance between the start and endpoint of the reaches (Leopold and Wolman, 

1957). Confinement ratio was calculated as the width of the valley divided by the width of the 

bankfull channel, this was calculated at each transect and then averaged by site (Nagel et al., 

2014).  

Cross-sectional stream power and mean stream power were calculated for flows at the 

predicted 500-year flood discharge (using Alexander and Wilson, 1995). Cross-sectional stream 

power (W/m) was calculated for each site using Ω = γQS (Bull, 1979; Lecce, 1997), where γ is 

the specific weight of the fluid, 9,810 N/m3 (the density of water (1000 kg/m3) and the 

acceleration due to gravity (9.81 m/s2) and where Q is discharge (m3/s) and S is slope (m) 

(Lecce, 1997). Mean stream power (W/m2) was calculated using as ω = γRSV, where R is the 
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hydraulic radius (m), V is the flow velocity (m/s), and S is slope (m) (Lecce 1997). Although the 

density of water is likely to be greater during floods (Bendix, 1999), the water density value 

makes little difference to the end result (Costa, 1983). Once sinuosity, confinement, stream 

power, and sediment distribution were calculated, regression analysis was performed to see how 

these variables account for the variance in riparian forest flood damage. 

 

Forest Damage Results and Discussion 

Channel and Valley Characteristics. In general, sampling sites were located in 

watersheds containing primarily forested land-use (Table 2). This was the case at all of the sites 

except at Upper Tabor Creek in which 50% of the watershed was used for agriculture (Table 2). 

Additionally, Upper Tabor Creek contained the least amount of land (7%) within the Mark 

Twain National Forest system, while Lick Branch contained the most (62%) (Table 2). Basin 

slope, calculated using the method of Alexander and Wilson (1995) ranged from 0.005 m/m at 

Upper Tabor Creek to 0.013 m/m at Lower Tabor Creek and Lick Branch (Table 2). Differences 

in land-use and basin slope may influence forest damage throughout watersheds. Increased slope 

typically increases stream power (Bendix, 1997). Land-use causing soil disturbance or adding 

impervious area can reduce roughness and increase runoff rates and sediment loads (Shepherd et 

al., 2010).  

Valley confinement and sinuosity were greatest at Lower Tabor Creek. Average valley 

confinement ranged from 1.2 at Lower Tabor Creek and to 5.8 at Dry Creek and Spring Branch 

(Table 3). However, reach-scale variability in valley confinement was greatest at Dry Creek 

(CV% = 43%) and lowest at Lick Branch (CV% = 20%) (n = 11) (Table 3). The range in 

sinuosity values was relatively narrow (1.02 to 1.16) with the exception of Lower Tabor Creek 
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(1.75) (Table 3). Valley confinement and sinuosity have previously been reported to be 

significant factors in affecting riparian forest damage (Swanson et al., 1998; Johnson et al., 

2000), thus suggesting that forest damage might be higher at Lower Tabor Creek. 

Active channel width was lowest at Lick Branch (13 m) and highest at Lower Tabor 

Creek (48 m) (Table 3). Variability (CV%) in active channel width ranged from 10% at Upper 

Tabor Creek to 48% at Spring Branch (Table 3). Valley width ranged from 59 m at Lick Branch 

to 128 m at Spring Branch (Table 3). Variability in valley width was greatest at Lower Tabor 

Creek (45%) and lowest at Lick Branch (5%) (Table 3).  

In general, sediment distribution in riffle channel units varied across the sites (Table 3). 

Median sediment size (D50) ranged from fine gravel (5 mm) at Spring Branch to coarse gravel 

(32 mm) at Lick Branch (Table 3) (Rosgen, 1996). Average max clast size ranged from medium 

cobble (108 mm) at Spring Branch to small boulder (512 mm) at Dry Creek (Table 3) (Rosgen, 

1996). Pebble counts recorded in the stream channel may be better related to channel slope 

variables and not forest floor flood resistance. However, larger sediment, such as large boulders, 

in the channel, may obstruct flow, resist erosion, or trap large woody debris.  

Relative landform area varied among sites with chutes typically covering the least 

amount of area, varying from not present in the surveyed reach area at Lick Branch and Upper 

Tabor Creek to 9-14% at Spring Branch, Lower Tabor Creek, and Dry Creek (Table 4; Fig. 3a -

3f). Floodplains and terraces typically covered the most valley floor area, ranging from 37% at 

Lick Branch to 73% at Spring Branch (Table 4; Fig. 3a-3f). Additionally, the active channel at 

Upper Tabor Creek and Lick Branch exhibited more of a multi-threaded planform whereas the 

other sites, were primarily single channel types. No single landform covered more than 63% of 

any site (i.e., active channel at Lick Branch) (Table 4).  
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Stream Power Calculations. Mean and cross-sectional stream power, calculated at the 

500-year discharge, was greatest at Lower Tabor Creek (847 W/m2 and 77,877 W/m, 

respectively) (Table 5). Mean 500-year stream power was lowest at Upper Tabor Creek (207 

W/m2) (Table 5). Cross-sectional 500-year stream power was lowest at Lick Branch (9,748 

W/m) (Table 5). Based on these results and previous studies of forest damage Lower Tabor 

Creek was expected to have the greatest quantity of forest damage because of high stream power, 

valley confinement, and sinuosity. Lick Branch was expected to have the least damage due to 

lower stream power, sinuosity, and confinement.  

At all the sites the average height of the observed high water mark was at or above the 

500-year flood stage (Table 5). Heights of the high water marks were typically 1-2 m above the 

flood stage of the calculated 500-year flood peak (Table 5). The differences in flood stage depth 

could be as a result of scarring from branches extending above the water surface, creating high 

water marks above the actual depth of the water. However, at Lower Tabor Creek and Upper 

Tabor Creek the high water marks indicated a flood stage 3 - 4 m above the 500-year flood stage 

(Table 5). However, when only looking at high water marks from debris flow lines and not from 

tree scarring, high water marks at Upper Tabor Creek and Lower Tabor Creek were less than 2 m 

above the 500-year flood stage. Higher flows may also have been observed at these sites due to 

their drainage areas being in higher rainfall intensity areas (Fig. 2). The 500-year flood discharge 

was used to estimate the 500-year stream power.  

Canopy Loss. Pre-flood canopy cover reflects stream processes and was typically lowest 

over the active channel (0-16%) and greatest over floodplains, terraces, and chutes (Table 6). 

Pre-flood canopy cover at each of the sites was typically high, with 81-100% of the site covered 

(Table 6). Canopy loss due to the flood was greatest at Lower Tabor Creek in which 63% of the 
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canopy cover was removed and lowest at Lick Branch and Spring Branch in which only 7-8% of 

the canopy cover was removed (Table 6). At Dry Creek, Indian Creek, and Upper Tabor Creek 

canopy loss was about 30% (Table 6). Canopy loss was greatest over the active channel at Spring 

Branch (48%), Upper Tabor Creek (97%), and Lick Branch (84%), and greatest over floodplains 

at Lower Tabor Creek (47%) and Indian Creek (48%) (Table 6). Canopy loss over terraces was 

greatest at Dry Creek with 50% canopy loss (Table 6). Thus canopy loss was typically greatest in 

the areas closest to deepest and fastest moving flood flows, near the main channel thalweg. 

However, canopy loss over terraces may result from adjacent chutes directing high velocity 

flows into the higher elevation forested areas on the valley floor.  

Number and Size of Tree Damage. The number of standing trees increased with 

increasing sample area. Dry Creek had the most standing trees remaining on the valley bottom 

(266) and Lick Branch had the least amount of standing trees (73) (Table 7; Fig. 4). The number 

of standing trees was greatest on floodplain and terrace features at all the sites, except Lick 

Branch (Table 7). Chutes typically had the least amount of standing trees (Table 7). Excluding 

chutes, which composed the smallest area at all the sites (Table 4), the active channel typically 

had the least amount of standing trees (Table 7).  At Upper Tabor Creek and Lick Branch, the 

sites without chutes, the least amount of standing trees were present on floodplains and terraces 

(Table 7). The amount of standing trees on terraces at Upper Tabor Creek was likely low due to 

the relatively small amount of area that terraces occupied (Table 4). 

At each site, damaged tree diameter varied little among landform location, typically by 

only a few centimeters (Table 7). Average diameter at four of the six sites, including, Dry Creek 

(0.21 m), Lower Tabor Creek (0.19 m), Upper Tabor Creek (0.17 m), and Lick Branch (0.15 m) 

was largest in the active channel, while the largest diameter at Indian Creek (0.24 m) and Spring 
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Branch was in chutes and on terraces, respectively (Table 7). Average damaged tree length 

varied across landforms by a few meters and was greatest in the active channel at Indian Creek 

(11.9 m), Upper Tabor Creek (8.5 m), and Spring Branch (11.7 m) and on floodplains at Dry 

Creek (9.1 m), Lower Tabor Creek (8.9 m), and Lick Branch (5.8 m) (Table 7). Larger trees may 

have been found in the active channel due to proximity to higher energy flows which could 

topple trees through bank erosion and collisions with mobilized floating large woody debris.  

Volume of Damaged Trees. Total damaged tree volume was greatest at Lower Tabor 

Creek (112.3 m3) and lowest at Lick Branch (1.4 m3) (Table 7). Damaged tree volume was 

typically greatest on terraces and floodplains. However, Upper Tabor Creek (29.9 m3) and Lick 

Branch (0.9 m3) had the greatest damaged tree volume in the active channel (Table 7). Damaged 

tree volume per hectare increased with increasing drainage area (Table 7; Fig.5). Damaged tree 

volume per hectare was greatest at Dry Creek (27.4 m3/ha) and smallest at Lick Branch (5.2 

m3/ha) (Table 7). Damaged tree volume per hectare by landform showed positive relationships 

with drainage area, for most of the landforms (Fig. 6a-6d). The highest damaged tree volume per 

hectare occurred in the active channel at Upper Tabor Creek, Spring Branch, and Lick Branch 

(Table 7). Damaged tree volume per hectare at Indian Creek and Lower Tabor Creek was highest 

on floodplains and highest in chutes at Dry Creek (Table 7). This shows that damaged tree 

volume per hectare was typically greatest on landforms in close proximity to higher energy 

flows. However, vegetation damage on higher elevation landforms may be explained by the 

distribution of the flood resistant nature of riparian species across the valley bottom. Typically 

riparian species that grow on higher elevation landforms (terraces), that are less flood prone, are 

the least adapted for withstanding flooding (Harris, 1987). 
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Type and Orientation of Damaged Trees. At each site, damaged trees were typically 

uprooted (90%). The number of toppled trees was greatest at Dry Creek (46) and lowest at 

Spring Branch and Lick Branch in which there were no toppled trees. Distribution of toppled 

trees varied across landforms and did not show a clear pattern. Damaged tree patterns on fluvial 

landforms generally align with the direction of the probable streamflow (Fig. 3a-3f). 

Additionally, when damaged trees did not align with the flow direction of the main channel, 

many aligned with secondary channels/chutes flow direction (Fig. 3a-3d). Trees that either 

aligned with the probable main channel streamflow and/or chute flow made up 89% of the 

damaged trees. Trees that did not align with the streamflow were typically on higher terraces 

(55%) or snagged on trees or jams of debris (32%) (Fig. 3a-3f).  

Riparian trees/large woody debris accumulated at the entrance of and within chutes (Fig. 

3a-3d), similar to results found by Nakamura and Swanson (1994). The majority of damaged 

trees were not in jams (95%), similar to results found by Morche et al. (2007). At the Spring 

Branch and Indian Creek sites, jams occurred between the active channel and chutes on 

floodplains (Fig. 3c and 3a). At Lower Tabor Creek and Indian Creek jams occurred on the 

outside of channel bends (Fig. 3b and 3a), similar to results found by Gurnell et al. (2002).  

Tree Tally Transect Versus UAV Results. Basal area of standing trees, recorded within 

the 5 m wide sampling transects was highest at Lick Branch transect 1 (68.5 m2/ha) and lowest at 

Lick Branch transect 10 (2.5 m2/ha) (Table 8). Previous forest studies conducted in the Ozarks 

have shown that basal area (of all species) range from 0 - 46 m2/ha with an average basal area of 

14 m2/ha (Blizzard et al., 2007). In the 5 m wide sampling areas of this study, basal area ranged 

from 2.5 - 68.5 m2/ha, with an average basal area of 23 m2/ha (Table 8). However, excluding 

Lick Branch, which had the largest (68.5 m2/ha) and smallest (2.5 m2/ha) basal areas, the range 
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of basal areas was from 4.4 - 29.5 m2/ha and the average was 16 m2/ha (Table 8). This shows that 

the sampling transects in this study generally remained within known ranges of basal areas in the 

Ozarks.  

Wood volume that was stored in the 5 m wide sampling zone was greatest at Spring 

Branch transect 5 (4.89 m3) and smallest at Lick Branch transect 1 and 10 (0 m3) (Table 8). 

Excluding transects without any stored wood (Lick Branch transects 1 and 10) Spring Branch 

transect 7 had the least amount of stored wood (0.58 m3) (Table 8). Basal area and stored wood 

volume were inversely related, high basal area of standing trees corresponded with low stored 

wood volume.  

When comparing the field and UAV measurements of wood volume storage in the 5 m 

wide sampling zone, the relationship was statistically significant (R2 = 0.91, p < 0.01) (Fig. 7). 

Generally the UAV underestimated the volume of wood in the 5 m zone. This result indicates 

that UAV imagery can be used to quantify volumes of forest damage. However, further work 

needs to be done in order to identify the limitations of the UAV imagery and GIS methods in 

quantifying damaged tree volume.  

Geomorphic Relationships with Forest Damage. Mean and cross-sectional 500-year 

stream power explained the greatest amount of variance in canopy loss and total damaged tree 

volume, typically as stream power increased so did forest damage (Fig. 8a, 8b, 9a, 9b). Mean 

500-year stream power accounted for 70% of the variance in canopy loss and 67% of the 

variance in total damaged tree volume and was statistically significant in both cases (Fig. 8a and 

8b).  Mean 500-year stream power accounted for less than 20% of the variance in damaged tree 

volume per hectare (p = 0.39). Cross-sectional stream power accounted for 90% of the variance 

in total damaged tree volume and 73% of the variance in canopy loss and was statistically 
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significant in both cases (Fig. 9a and 9b). Cross-sectional 500-year stream power also explained 

for 48% of the variance in damaged tree volume per hectare (p-value = 0.13).  

 Pearson correlation analysis was used to understand the relationships between forest 

damage and hydrologic/morphologic variables (Table 9). Typically the best correlations between 

forest damage and the hydrologic/geomorphic factors occurred on floodplains and in chutes and 

with stream power or drainage area (Table 9). The active channel showed the lowest correlations 

with the variables and forest damage and showed significant correlations between forest damage 

and stream power, drainage area, and confinement (Table 9). Sinuosity and confinement 

generally did not correlate significantly with total forest damage, but were related to the damage 

across some of the landforms (Table 9). Further analysis showed that channel sinuosity was not a 

statistically significant indicator of total forest damage (i.e., volume, volume per hectare, and 

canopy loss) (Fig. 10). The weak positive relationships were weighted heavily by the Lower 

Tabor Creek sinuosity value, thus the sample size (n=6) was too small to show the relationship 

with forest damage. Similarly, the small sample size of this study could also not provide 

conclusive results of the relationship between valley confinement and forest damage (Fig. 11). 

Median sediment size (D50) and reach slope did not have any significant correlations with any of 

the forest damage across all landforms.  

Correlation analysis among the geomorphic variables showed the highest correlations 

with mean stream power (Table 10). Basin slope, sinuosity, confinement, and median sediment 

size had relatively high correlations with stream power (Table 10). This indicates that mean 

stream power reflects the combined effects of several geomorphic forcing variables, making it a 

good candidate as a key variable for assessing and predicting forest damage.  
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Conclusions 

This study examined the effects of a 500 year flood on riparian forests in the Missouri 

Ozarks (Heimann et al., 2018). Patterns and distribution of riparian forest damage were identified 

using high-resolution UAV imagery. Hydrologic and morphologic variables identified through 

field surveys were then used to explain the variability in riparian forest damage. There are six 

key findings in this study:  

1. Patterns of forest damage from this 500-year flood reveal similar results to 

previous studies conducted outside of the Midwest. Generally, damaged trees were 

found to align with the probable streamflow (89%) and were not in jams (95%). 

Accumulation of damaged trees occurred on the outside of channel bends and within 

chutes; 

2. Canopy loss tended to increase with drainage area. Canopy loss varied across the 

valley-bottom landforms, but was generally greatest closest to the active channel 

reflecting both flood processes and pre-flood forest composition; 

3. Damaged tree volume and volume per hectare also tended to increase with 

increasing drainage area. Drainage area accounted for more variance in damaged 

tree volume per hectare (R2 = 0.81, p-value =0.01) and for valley bottom landforms 

(R2 = 0.02 – 0.92); 

4. Geomorphic stream power is a good predictor of tree damage. Cross-sectional 

and mean 500-year stream power estimates explained for the most variance in canopy 

loss (R2 = 0.73 and R2 = 0.70) and damaged tree volume (R2 = 0.90 and R2 = 0.67). 

Additionally, mean stream power showed relatively high correlations with other 

geomorphic variables and represents the combined effects of slope, sinuosity, and 

confinement; 

5. Floodplains and terraces tended to have the greatest quantities of tree damage. 
Four of the six sites had the greatest damaged tree volume occur on floodplains and 

terraces. When present, chutes typically had the least damaged tree volume. However, 

chutes can direct flows into forested areas on higher elevations, potentially causing 

tree damage; and 

6. The use of UAVs proved to be a useful tool for detecting and measuring riparian 

forest damage. Field and UAV volume estimates showed high R2 (0.91) and were 

statistically significant (p-value < 0.01). Errors were generally understood, however 

more work on these applications is needed.  

 

This work provides much needed data on the relationship between large flood effects and 

riparian forest damage in the Ozark Highlands. This region lacks this kind of data and has 

increasing concerns of larger more frequent floods (Pavlowsky et al., 2016; Heimann et al., 
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2018). Future work will focus on collecting data at more sites to increase the sample size and 

verify the relationships between the hydrologic/geomorphic variables and forest damage and 

creating accurate predictive models of riparian forest damage. Mean and cross-sectional stream 

power accounted for the most variance in total damaged tree volume and canopy loss and could 

be used as predictors of forest damage. However, with only a small sample size (n = 6) more 

sample sites are needed to verify these relationships. UAVs were also verified as accurate time-

saving tools for assessing forest damage. These results further our understanding of flood effects 

on riparian forests and contributes to our broader understanding of the effects of climate change. 

With increasing concerns about climate change, the demand for more studies on its effects on 

watersheds are needed.  
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  Relfe-Sandbur Secesh-Tilk Britwater  

  Complex Complex Silt-Loam 

Soil Order (Ap/C) (Ap/BE/Bt/2Bt) (Ap/Bt1/2Bt2) 

        

Flood Frequency Frequent Occasional Rare 

        

Landform Floodplains Floodplains Terraces 

        

Texture       

        

          Surface Soil Very gravelly sandy loam Silt loam Silt loam 

        

          Subsoil Extremely cobbly coarse  Gravelly clay  Very gravelly 

  

sand and very gravelly 

loamy sand   loam clay loam 

       

Thickness       

        

          Surface Soil  15 cm 70 cm 60 cm 

        

          Subsoil > 135 cm > 80 cm > 90 cm 

        

Depth to Bedrock  > 150 cm > 150 cm > 150 cm 

        

Sample Reach Area (%)       

        

          Dry Creek 73 0 37 

        

          Indian Creek 100 0 0 

        

          Lower Tabor Creek 100 0 0 

        

          Upper Tabor Creek 0 100 0 

        

          Spring Branch  100 0 0 

        

          Lick Branch  0 100 0 

 

 

Table 1. Alluvial Soil Series at the Sample Reaches 
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  Drainage % Area Basin Slope  2016 Land Use (%) 

Site  Area (km2) MTNF  (m) Agriculture Forest Urban Other  

Dry Creek 124.2 36 0.006 31 64 4 1 

                

Indian Creek 101.6 43 0.007 16 79 3 2 

                

Lower Tabor 

Creek 65.4 19 0.013 43 51 6 0 

                

Upper Tabor 

Creek 54.0 7 0.005 50 45 3 2 

                

Spring Branch  49.1 50 0.008 19 78 2 1 

                

Lick Branch  4.5 62 0.013 13 86 1 0 

Table 2. Watershed Characteristics  
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     Lower   Upper     

  

Dry 

Creek  

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch  

Sinuosity 1.1 1.2 1.8 1.0 1.3 1.2 

              

Active Channel Width (m)             

              

           Average  19.9 31.5 47.9 28.6 25.8 13.3 

              

           CV% 34 25 32 10 48 21 

              

Valley Width (m)             

              

           Average  103.3 100.5 56.7 65.5 127.5 58.7 

              

           CV% 16 10 45 27 14 5 

              

Confinement Ratio             

              

           Average 5.8 3.3 1.2 2.3 5.8 4.6 

              

           CV% 43 24 35 33 40 20 

              

Channel bed Material             

              

           Sample size  29 30 30 30 30 15 

              

           D16 13.6 19.9 14.8 8 5 32 

              

           D50 35 39.5 48.5 16 27.5 64 

              

           D84 60.4 74.2 90.2 45 60.2 118 

              

           Average Max Clast Size (mm) 512 165.8 286 196 108 182 

              

           % Bedrock/Cut-Earth 3 0 0 0 0 50 

              

Reach Slope (m/m) 0.007 0.003 0.011 0.005 0.004 0.015 

 

Table 3. Geomorphic Site Characteristics 
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Dry 

Creek  

  Lower Upper     

  

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch  

Study Area (ha) 2.08 4.01 4.80 2.04 3.47 0.26 

              

% Active Channel 28 10 30 49 18 36 

              

% Floodplain 39 17 34 39 34 64 

              

% Terrace 22 67 24 12 46 0 

              

% Chute  11 6 12 0 2 0 

Table 4. Landform Distribution 
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      Lower Upper       

  

Dry 

Creek 

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch  

Width (m) 117.25 123.80 96.78 80.70 131.35 26.12 

              

Depth (m) 5.10 5.60 4.00 3.80 3.70 2.10 

              

Hydraulic Radius (m) 2.78 3.19 1.91 2.01 2.00 0.30 

              

Velocity (m/s) 2.12 1.60 3.26 2.10 1.51 2.02 

              

Area (m2) 332.31 410.26 187.94 164.90 268.12 8.21 

              

Wetted Perimeter (m) 119.72 128.79 98.15 82.05 134.28 26.93 

              

Width -Depth Ratio 22.99 22.11 24.20 21.24 35.50 12.44 

              

Discharge (m3/s) 735.12 674.80 634.47 343.16 410.26 75.61 

              

Mean 500-year SP (W/m2) 347 492 847 207 249 349 

              

Cross-Sectional 500-year 

SP (W/m) 43,377 46,299 77,877 16,858 33,466 9,748 

              

HWM Flood Depth (m) 7.30 5.60 7.70 6.70 4.60 3.20 

              

Difference in 500year and              

HWM Flood Stage (m) 2.20 0.00 3.70 2.90 0.90 1.10 

              

HWM Height Range (m) 1.18 2.35 3.28 6.01 2.87 1.54 

Table 5. 500-year Flood 

 



37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

      Lower Upper      

  
Dry 

Creek  

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch  

Pre-Flood Open 

Canopy (%)             

              

          Total 5 19 1 0 12 0 

              

          Active Channel 5 16 0 0 10 0 

              

          Floodplains 0 3 0 0 2 0 

              

          Terraces 0 0 0 0 0 0 

              

          Chutes 0 0 0 0 0 0 

              

Canopy Loss (%)             

              

          Total 31 32 63 28 8 7 

              

          Active Channel 24 42 38 94 48 56 

              

          Floodplain 17 28 44 3 52 44 

              

          Terrace 55 30 3 4 0 0 

              

          Chute 5 0 16 0 0 0 

Table 6. Pre and Post Flood Canopy Cover 
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      Lower   Upper       

  

Dry 

Creek  

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch 

Standing Trees             

              

          Count 269 212 273 187 266 75 

              

          % in Active Channel 18 6 14 36 6 31 

              

          % on Floodplains 63 9 23 51 36 69 

              

          % on Terraces 13 83 56 13 59 N/A 

              

          % in Chutes 6 2 7 N/A 0 N/A 

              

Damaged Trees             

              

          Count 193 170 393 206 56 14 

              

          % in Active Channel 10 13 23 50 20 64 

              

          % on Floodplains 26 21 50 27 57 36 

              

          % on Terraces 48 59 16 23 20 0 

              

          % in Chutes 15 7 11 0 4 0 

              

Average Damaged Tree Diameter (m)             

              

           Active Channel 0.22 0.22 0.20 0.17 0.29 0.15 

              

           Floodplains 0.18 0.23 0.16 0.13 0.25 0.15 

              

           Terraces 0.18 0.21 0.18 0.16 0.26 N/A 

              

           Chutes 0.18 0.22 0.17 N/A 0.18 N/A 

Table 7. Riparian Forest Damage at each Site 
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      Lower   Upper       

  

Dry 

Creek  

Indian 

Creek 

Tabor 

Creek 

Tabor 

Creek 

Spring 

Branch  

Lick 

Branch 

              

Average Damaged Tree Length (m)             

              

           Active Channel 8.6 12.4 8.4 8.8 11.7 4.4 

              

           Floodplain 8.7 10.2 9.0 6.3 9.5 6.5 

              

           Terraces 8.0 8.1 8.5 6.3 10.3 N/A 

              

           Chutes 7.1 8.5 8.3 N/A 10.5 N/A 

              

Damaged Tree Volume (m3)             

              

          Total 56.8 84.7 114.1 36.4 35.2 1.4 

              

          Active Channel 8.9 13.1 35.1 24.7 10.7 0.7 

              

          Floodplain 14.5 24.7 49.3 5.3 17.8 0.7 

              

          Terraces 24.6 41.9 19.7 6.4 6.1 N/A 

              

          Chutes 8.7 5.0 10.0 N/A 0.5 N/A 

              

Damaged Tree Volume (m3) / hectare             

              

          Total  30.7 28.3 27.1 17.9 10.4 5.2 

              

          Active Channel 17.1 42.0 28.1 24.5 17.7 7.3 

              

          Floodplains 20.1 49.5 34.2 6.7 15.5 4.0 

              

          Terraces 60.1 21.0 19.2 26.3 3.9 N/A 

              

          Chutes 43.3 27.2 20.2 N/A 9.3 N/A 

 

Table 7 continued. Riparian Forest Damage at each Site 
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    Standing Basal  Wood   

Site Transect   Area (m2/ha) Volume (m3) 

Dry Creek 4 17.4 1.32 

        

Indian Creek 4 17.6 2.86 

        

Indian Creek 7 15.4 3.54 

        

Lower Tabor 

Creek 3 9.9 2.55 

        

Upper Tabor 

Creek 3 19.9 2.1 

        

Spring Branch 5 4.4 4.89 

        

Spring Branch 7 29.5 0.58 

        

Lick Branch  1 68.5 0 

        

Lick Branch  4 48.2 0.71 

        

Lick Branch  10 2.5 0 

 

 

 

 

 

 

 

 

Table 8. Standing Basal Area and Stored Wood Volume within the 5 m wide Sampling Zone 
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Fig. 3a. Geomorphic Map of Indian Creek 
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Fig. 3b. Geomorphic Map of Lower Tabor Creek 
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Fig. 3c. Geomorphic Map of Spring Branch 
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Fig. 3d. Geomorphic Map of Dry Creek 
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Fig. 3e. Geomorphic Map of Lick Branch 
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Fig. 6b. Damaged Tree Volume per Hectare (m3/ha) on Floodplains Compared to Drainage 

Area (km2) 
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Fig. 8a. Mean 500-year Stream Power (W/m2) Compared to Canopy Loss (%) 
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Fig. 9a. Cross-Sectional 500-year Stream Power (W/m) Compared to Canopy Loss (%) 
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Fig. 10. Forest Damage Compared to Channel Sinuosity 
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CHAPTER THREE: UAV MONITORING OF FOREST DAMAGE AND FLUVIAL 

LANDFORMS 

 

Unmanned aerial vehicles (UAVs) have previously been used to acquire high-resolution 

aerial imagery to provide detailed information for environmental assessments (Quilter and 

Anderson, 2000; Dandois and Ellis, 2010; Anderson and Gaston, 2013; Jeong et al., 2018). The 

need for UAV imagery in this study comes after a 500-year flood event in the Missouri Ozarks, 

which caused extensive damage to riparian forests. The purpose of this chapter is to assess 

whether the use of UAV imagery can accurately assess riparian forest damage along six sites 

following the 500-year flood event. UAV imagery has the potential to quickly quantify and 

identify patterns of riparian forest damage that would normally take weeks to accomplish with 

field surveys. The objectives of this study are to assess the accuracy of UAV imagery in 

detecting individual damaged tree volume, canopy change, and stream geomorphology. If 

successful, UAVs could help support forest management practices in Mark Twain National 

Forest and further support the use of UAVs in environmental assessments.  

 The high-resolution imagery that UAVs can obtain has allowed for precise assessments 

of forest and river characteristics. UAV imagery has been used before to identify individual 

plants and canopy gaps greater than one square meter (Getzin et al., 2012). Additionally, with the 

use of photogrammetry, UAV images can produce three-dimensional models to derive heights of 

landforms (Dandois and Ellis, 2010; Watanabe and Kawahari, 2016) and canopy heights (Zahawi 

et al., 2015). The accuracy of three-dimensional models produced from UAV imagery has been 

tested with promising results. In a comparison of a digital surface model (DSM) derived from 

UAV imagery with a ground survey of river channel morphology, Watanabe and Kawahari 
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(2016) found similar results, with an average difference in elevation of only 4 cm and a 

maximum difference of 7 cm. Photogrammetric techniques were limited by thick vegetation, 

which prevented accurate ground level data to be acquired with the UAV (Watanabe and 

Kawahari, 2016).  

Image collection procedures affect the accuracy of measurements derived from aerial 

photographs and photogrammetric techniques. In a study on the accuracy of UAV 

photogrammetric mapping of a beach environment, Jeong et al. (2018) obtained root mean 

square errors (RMSEs) of less than 4.9 cm with flight altitudes less than 150 m and image 

overlap of 70%. Similarly, Dandois et al., (2015) found that clear skies, image overlap of greater 

than 60% and 80 m flight altitude (above forest canopy) provides optimal UAV-SfM (structure-

from-motion) remote sensing conditions. Ground control points (GCPs) are also crucial for 

obtaining accurate images. Jeong et al., (2018) had RMSEs of less than 9.4 cm when using at 

least five GCPs. The accuracy of aerial photographs can be verified through field surveys (Fujita 

et al., 2003) or through other forms of imagery such as LiDAR (Dandois et al., 2015; Jeong et 

al., 2018). For this study ground surveys were conducted to check UAV measurements.  

Modern photogrammetry uses Structure-from-Motion (SfM) techniques which allow 

measurements to be derived from aerial photographs (Fonstad et al., 2013). SfM photo-

grammetry uses photos taken from several perspectives to create three-dimensional shapes of 

objects in the photographs (Fonstad et al., 2013). SfM photogrammetry works by identifying key 

points in the photographs (key points are unique points in the photographs) and then using the 

key points to find tie points (the same point identified in different photographs) (Warrick et al., 

2017). Once the tie points are identified, the camera position can be identified in the model and 

this allows for three dimensional point clouds and models to be built (Warrick et al., 2017).  
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Study Area 

This study was conducted in southern Missouri on tributaries of the North Fork of the 

White River in the counties of Douglas and Howell (Fig. 1). Six sites, along  different tributary 

streams, were selected to identify how well UAV imagery can detect forest damage (i.e., 

individual tree volume and canopy change) and fluvial landforms along streams that suffered 

catastrophic damage due to the large flood (>500-year RI) (Erdman, 2017; US Department of 

Commerce, 2017 Heimann et al., 2018). The sites cover a range of drainage areas (4.5 – 124.2 

km2) with access to Mark Twain National Forests and where the most precipitation fell during 

the storm event which led to the flooding (Fig. 1, Fig. 2).  

 

Methods 

Imagery Collection. High-resolution (< 8 cm) UAV imagery was collected at six 

tributary sites with a DJI Phantom 4 Pro in March 2018. The DJI Phantom 4 Pro has a 1” CMOS 

sensor and a maximum flight time of approximately 30 minutes (DJI Phantom 4 Pro, 2019). 

Agisoft Metashape (formerly Agisoft Photoscan Professional) was used to process the UAV 

imagery and generate high-resolution orthophotos and Digital Surface Models (DSMs) (Agisoft 

Metashape, 2019). Gradual selection processes were used to filter points that had high residual 

errors (Hostens, 2019).  

The UAV imagery was collected during the early spring months in 2018 to allow more 

ground-level forest damage to be better detected due to the lack of leaf cover (Benke et al., 

2000). The September 2017 imagery, showed the sites with leaves on the trees and these images 

were used to calculate changes in canopy cover. Ground control points (GCPs) were used to 

improve the accuracy of the UAV images (Vanlooy and Martin, 2005). Typically, six GCPs were 
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used at each site, however, the number of GCPs varied at the largest and smallest site. Lick 

Branch only used five GCPs, while Lower Tabor Creek used ten. The UAV flight altitude was 

108 m and front and side image overlap was 80%. Several flight plans were used to acquire the 

images, including North-South Orthogonal, North-South Oblique, East-West Orthogonal, and 

East-West Oblique. The final images were generated from a combination of all the flight plans. 

Field Methods. Cross-sections of the valley floor, including the channel, floodplains, 

terraces, and chutes, were surveyed in the field (September 2018) to compare with cross-sections 

from the UAV DSM (March 2018). Measuring tapes were placed perpendicular to the stream 

and pulled across the valley floor. Elevation data was then collected along the tape using a stadia 

rod and an auto-level. In April, 2019 riparian tree sampling was conducted in the field at 

transects within a 5 m wide grid using the transect line as the upstream limit of the zone. 

Transect sampling is the recommended sampling method for areas influenced by an 

environmental gradient (Lyons and Sagers, 1998). Riparian tree sampling was performed in 

order to test the accuracy of the UAV measurements. One to three transects perpendicular to the 

streams were collected at each site and used as a baseline for a 5 m wide sample belt of riparian 

forest, similar to a study done by Katz et al. (2005). Tree diameter and length were recorded for 

all toppled or uprooted trees. Tree diameter was measured in two ways, once within the 5 m wide 

transect zone and once for the whole tree. Both field measurements of tree diameter were 

compared to the UAV measurement. Only whole tree length was compared to the UAV 

measurements. In the literature, there is large variation in the minimum tree diameter recorded in 

forest sampling procedures, ranging from 2-20 cm (Everham and Brokaw, 1996). For this study, 

10 cm was the minimum tree diameter that was included (Fierke and Kauffman, 2006). Standing 

tree and uprooted/toppled tree locations (x-y coordinates) were recorded to compare with UAV 
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imagery and assess the accuracy of GIS methods (Allen et al., 2012). Additionally, tree azimuth 

and some species identification data were collected.  

GIS Methods. (See previous methods reported in Chapter 2) Once the UAV images were 

processed, they were input into ArcMap 10.6 and used as a basemap for digitizing trees in the 

riparian zone. The riparian zone, the zone between a stream and valley slopes influenced by 

flooding (Naiman and Decamps, 1997), was delineated using GPS surveys and alluvial soils 

(data from USDA, 2005; USDA, 2006). Once the riparian zone was defined, all standing trees 

were identified and marked as point features in their own shapefile. Damaged riparian trees were 

then digitized as line features and given the following attributes; condition (toppled, or 

uprooted), length, diameter, azimuth, and volume. The measuring tool in ArcMap 10.6 was used 

to obtain the length and diameter of each of the damaged trees (toppled or uprooted). Diameter 

was measured near the center of the visible portion of the damaged trees. 

 

Results  

Valley Cross-Section Comparison. The UAV DSM provided similar results to the field-

surveyed cross-sections. The root mean square errors (RMSEs) of the valley cross-sections were 

relatively low and ranged from 0.15 m at Lick Branch to 1.82 m at Indian Creek and the 

differences could mostly be explained by vegetation. All but Indian Creek had RMSEs less than 

0.52 m. Dry Creek (Fig. 12a and 12b), Lower Tabor Creek (Appendix), Upper Tabor Creek (Fig. 

13a and 13b), and Lick Branch (Appendix) all had R2 > 0.92 when comparing the survey data to 

the UAV DSM data. This shows that the UAV imagery can accurately represent landforms and 

morphologies of fluvial environments. Spring Branch had R2 values of 0.79 and Indian Creek 

had R2 values of 0.27 (Appendix). Spring Branch had lower R2 values, because the thalweg 
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depths did not match between the UAV imagery and survey data. The cross-sections followed 

the same pattern at the same location across the valley, but the elevation data was shifted down 

for the UAV DSM since the thalweg depths for the UAV data were at a higher elevation than the 

survey data. It is unclear why there was poor correlation (R2 = 0.27) between the two elevation 

datasets at Indian Creek, where the thalweg location across the valley bottom did not even match 

up (Appendix). Potential reasons for the error could be image processing and/or GCP 

configuration, although the latter is unlikely since the distribution of GCPs was similar across all 

the sites. Vegetation also affects the UAV DSM (Watanabe and Kawahari, 2016), the UAV 

DSM is a surface elevation model and does not always represent the ground elevation data. Some 

of the fluctuations in the UAV DSM data are because of vegetation.  

Damaged Trees. Of the 121 damaged trees sampled (total for all sites) 48 were unable to 

be identified in the UAV imagery, this is because of canopy cover (71%), sediment deposition 

(13%), newly fallen/deposited since the UAV flight (8%), image processing (4%), and GPS 

accuracy (4%) (Table 11). Although one set of UAV imagery was taken during the leaf-off 

season (March 2018), branches from standing trees still blocked the view of damaged trees in the 

UAV imagery, this was considered canopy cover. Some of the trees recorded in the field were 

partially buried by sediment, and were unable to be detected when looking in the UAV imagery, 

this was considered as sediment deposition. In total, 73 damaged trees were able to be compared. 

Newly fallen trees were able to be identified because they can be seen in the UAV images as 

standing trees. Image processing prevented some of the damaged trees from being seen because 

the image processing software was unable to identify key points in the photos, resulting in 

blurred spots in the imagery (Fig. 14). This mostly occurred in the heavily forested areas where 

there were not distinguishing features that the software could identify. GPS accuracy averaged 
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from 1-3 m but could sometimes be less accurate. In some cases, the GPS point lay outside of the 

transect area on the UAV imagery and the damaged tree that the point corresponded to could not 

be identified.  

Diameter Comparison. The regression analysis for diameter measurements between the 

UAV imagery and the total diameter and the UAV imagery and the sample diameter had R2 

values of 0.63 and 0.72, respectively, and both were statistically significant (p <0.01). The total 

diameter measurement represents the measurement recorded in the field for the mid-point of the 

whole tree, while the sample diameter measurement represents the diameter measurement 

recorded at the mid-point within the 5 m wide sampling area. Further analysis of the UAV 

measurements found that the R2 values for the total diameter and sample diameter were highest at 

Dry Creek and Lower Tabor Creek and lowest at Indian Creek and Lick Branch (Table 12). 

When the UAV measurement was compared to both the sample diameter and the total diameter 

measurement and preferentially chosen for the closest values, the R2 value = 0.82 (Fig. 15). 

Length Comparison. Of the 73 trees for which length could be measured, 34 were 

mostly visible. Of the blocked trees some were concealed by canopy cover, branches, and debris, 

others were buried by gravel or in jams of other trees, or were washed out as the same color as 

the surrounding gravel. The RMSE between length measurements for all trees was 2.25 m. The 

R2 = 0.41 when comparing the field survey and UAV length measurements for all the trees. 

When comparing only mostly visible trees the R2 value increased to 0.80 (Fig. 16). Dry Creek 

and Spring Branch had the highest R2 values when comparing field measurements of tree length 

to the UAV measurement of tree length, while Indian Creek and Lick Branch had the lowest R2 

values (Table 12). By comparing only the mostly visible trees and excluding the two sites with 

the lowest R2 values (Indian Creek and Lick Branch) the R2 value increased to 0.86 (Fig. 17).  
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Volume Comparison. Volume of the damaged trees was estimated using the following 

equation, V = πr2h. Where r is the radius and h is the tree length. Volume was calculated from 

the field measurements and UAV measurements and then compared. The R2 = 0.37 when 

comparing all the trees for which volume could be estimated (Fig. 18). However, when only 

comparing the damaged trees that are mostly visible in the UAV imagery R2 increases to 0.75 

(Fig. 19). Volume estimates from the UAV imagery were slightly worse (R2 = 0.75), than 

estimates of diameter (R2 = 0.82) and length (R2 = 0.86). This is because in order to calculate the 

volume estimate both the diameter and length measurement were used. Thus small errors in 

diameter or length could cause errors in the volume estimate. 

 

Discussion 

Errors between UAV and field measurements of diameter were typically low (4 cm 

average) (Table 13). The largest differences between the field and the UAV measurements 

occurred at Indian Creek in which the largest difference between the total diameter measurement 

and the UAV measurement was 24 cm (Table 13) and 15 cm for the sample measurement (Table 

14). However, both of these measurements were only 2 cm and 3 cm off from the other estimate, 

showing the variability in tree diameter and sample location. In total 90% of all the 

measurements were within 9 cm of each other, and 80% of the measurements were within 5 cm. 

There is also a correlation between the spatial resolution of the UAV imagery and the magnitude 

of measurement errors: as the spatial resolution decreases the absolute difference between 

measurements increase (Fig. 20).  

Lick Branch and Indian Creek had low R2 relationships between the field measurements 

and the UAV measurements because of the number of damaged trees that were fully or partially 
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obscured in the UAV imagery. The objects blocking the view of a damaged tree affected the 

location where the diameter was measured and often affected tree length measurements; Indian 

Creek and Lick Branch had 66% and 100% of the damaged trees partially blocked from view. 

The damaged trees were visible enough to derive measurements; however, the measurements 

were not representative of the whole tree. 

Another reason for differences in the two methods of measuring length concerns the 

angles of damaged trees. If the tree was not flat on the ground, the angle of the tree will cause the 

tree length measured in the UAV imagery to differ from the actual tree length. The measured 

length on the UAV imagery would theoretically be shorter than the actual tree length, with error 

increasing with the angle of the tree off the ground level (Fig. 21). Although damaged trees were 

classified as toppled or uprooted in the field, the angle of the tree was not measured so this error 

could not be assessed.  

Differences in UAV measurements also may not align with the field measurements 

because of GPS accuracy. Small changes in sampling location can result in changes to diameter. 

Comparing field sample measurements to field total measurements show that even on the same 

tree, diameter can fluctuate, thus if GPS accuracy varies finding the same sampling location on 

the imagery, can be impossible. The GPS accuracy in this study could get up to sub-meter 

accuracy, but averaged from 1-3 m. This accuracy range was generally sufficient enough to 

identify the damaged tree location, but not the exact location of the diameter measurement. It is 

important to note that field measurements may also contain errors, which was not evaluated in 

this study.  

The use of UAVs for this study produced accurate quantification of landforms and 

damaged trees. RMSEs were lowest when comparing tree diameter and greatest when comparing 



66 

tree length. Measurement errors could mostly be explained by vegetation obscuring damaged 

tree measurements and ground surface elevations. However, the UAV measurements still 

provided results that were statistically the as field measurements. Additionally, using the UAV 

imagery greatly reduced time spent quantifying forest damage.   

 

Conclusions 

UAV imagery can be used to analyze riparian forest damage and fluvial landforms. This 

study found high R2 values (> 0.90) at four of the six sites when comparing the UAV DSM data 

to field surveys of fluvial landforms. Additionally, R2 values greater than 0.80 were obtained 

when comparing UAV and field measurements of damaged riparian tree diameter and length. 

Limits to UAV imagery and the data they can provide come from vegetation and other debris 

that can prevent or obscure measurements. Vegetation can cause differences in landform 

elevations and also limit accurate measurements of tree length and where measurements of tree 

diameter are taken (Table 11).  

This study shows that UAV imagery can be a useful and accurate tool for assessing 

riparian forest flood damage and fluvial landforms. However more studies are needed to further 

reduce the effects of various errors on UAV measurements. The use of UAV data provides cost-

effective, high-resolution data which can save time and money when conducting environmental 

assessments. Informally comparing field sampling time to UAV analysis, showed that using the 

UAV imagery to sample the same area as the field survey took at the most a quarter of the time 

(excluding image processing time). Field sampling along each transect took from one to two 

hours to collect the data on damaged tree location, diameter, length, azimuth, and condition 

(standing, toppled, uprooted). The UAV imagery in this study provided extremely useful data on 
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riparian forest damage from a large recurrence interval flood (>500-year) in a region lacking in 

understanding of the relationship between riparian vegetation and flooding.  
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Site Average Smallest  Largest  Median  UAV Imagery Resolution 

Dry Creek  0.02 0.00 0.04 0.01 0.05 

            

Indian Creek 0.03 0.00 0.24 0.02 0.05 

            

Lower Tabor Creek  0.03 0.00 0.13 0.02 0.04 

            

Upper Tabor Creek 0.03 0.01 0.06 0.03 0.03 

            

Spring Branch  0.05 0.01 0.09 0.04 0.03 

            

Lick Branch  0.09 0.03 0.13 0.09 0.08 

            

All Sites 0.04 0.00 0.24 0.03 0.03-0.08 

  

      R2 Value   

    Diameter  Diameter  Length  

Site  Sample Size UAV vs Sample UAV vs Total UAV vs Field  

Dry Creek 7 0.91 0.89 0.79 

          

Indian Creek 24 0.64 0.32 0.26 

          

Lower Tabor Creek 18 0.81 0.81 0.40 

          

Upper Tabor Creek 8 0.62 0.65 0.34 

          

Spring Branch  12 0.77 0.65 0.57 

          

Lick Branch  4 0.06 0.60 0.01 

          

All Sites  73 0.72 0.63 0.41 

Table 12. Comparison of UAV and Field Measurements of Diameter and Length 

 

Table 13. Differences between Field Survey “Total” and UAV Diameter Measurements 

(m) 

 

*Two measurements of diameter were taken in the field, “Sample” refers to the diameter 

measurement taken within the five meter wide sampling transect, “Total” refers to the 

diameter measurement recorded for the whole tree. 
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Site Average  Smallest  Largest  Median  UAV Imagery Resolution 

Dry Creek  0.04 0.00 0.04 0.01 0.05 

            

Indian Creek 0.03 0.00 0.15 0.01 0.05 

            

Lower Tabor Creek  0.04 0.00 0.10 0.03 0.04 

            

Upper Tabor Creek 0.04 0.01 0.08 0.02 0.03 

            

Spring Branch  0.04 0.00 0.10 0.04 0.03 

            

Lick Branch  0.09 0.03 0.13 0.09 0.08 

            

All Sites 0.03 0.00 0.15 0.02 0.03-0.08 
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Fig. 12a. Cross-Section of Dry Creek using UAV DSM and Survey Data 
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Fig. 12b. Regression Analysis of UAV DSM and Survey Elevation Data at Dry Creek 

 

Fig. 13a. Cross-Section of Upper Tabor Creek using UAV DSM and Survey Data 
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Fig. 13b. Regression Analysis of UAV DSM and Survey Elevation Data at Upper Tabor 

Creek 

 

Fig. 14. Blurred Spots on the UAV Imagery from the Image Processing 
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*Two diameter measurements were taken in the field, for this figure the diameter 

measurement which was closest to the UAV diameter measurement was compared with the 

UAV measurement. 

 

Fig. 16. Field Survey Compared to UAV Tree Length Measurements using only Mostly 

Visible Trees 
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Fig. 17. Field Survey Compared to UAV Tree Length Measurements using only Mostly 

Visible Trees and Excluding Indian Creek and Lick Branch 

 

Fig. 18. Field Survey Compared to UAV Volume Estimates (All Trees) 

 

p = 0.00 
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Fig. 19. Field Survey Compared to UAV Volume Estimates Including only Mostly Visible 
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Fig. 20. Relationship Between Image Resolution and Measurement Errors of Diameter 
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Fig. 21. Toppled Tree Length Underestimated in UAV Imagery. Terrestrial Photograph (left) 

and UAV Imagery (right) of the Same Tree 
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CHAPTER FOUR: CONCLUSION 

 

This study contributes to our understanding of the applications and limitations of using 

UAVs in environmental assessment, the relationship between riparian forests and flooding, and 

the effects of climate change. High-resolution UAV imagery was used to estimate riparian forest 

damage following a >500 year flood in the North Fork of the White River watershed in the 

Missouri Ozarks. Individual tree volume estimates and canopy loss were calculated from UAV 

imagery to quantify the forest damage. The measurements derived from the UAV imagery were 

then compared to field measurements. Once the riparian forest damage was quantified and 

identified across fluvial landforms, it was compared to hydrologic and morphologic variables.  

UAV imagery can be used to derive accurate measurements of damaged tree diameter 

and length. Measurements derived from the UAV imagery were statistically the same as field 

measurements. However, there are limitations to using this data. One can only measure what is 

visible in the imagery. Thus if there is anything above the damaged tree, blocking it from view, 

the measurements may be skewed (i.e., length shortened or diameter changed). Canopy cover, 

debris jams, and branches all limit measurements derived from the imagery. UAV imagery can 

also be used to successfully create highly detailed and accurate topographic cross-sections of 

fluvial environments and landforms. The results in this study showed greater than 0.90 R2 values 

at four out of the six sites when comparing UAV and field survey elevation data.. Additionally, 

the UAV imagery greatly reduced sampling time of forest damage, many times sampling time 

was reduced by at least 75%.  

Stream power (mean and cross-sectional), confinement, sinuosity, and sediment size all 

had positive correlations with riparian forest damage. Cross-sectional stream power explained 



78 

the greatest percentage of the variance in total damaged tree volume and canopy loss. Riparian 

forest damage peaked at Lower Tabor Creek which had the greatest percentage of canopy loss, 

the greatest number of damaged trees, and the greatest volume of damaged trees. The greatest 

riparian forest damage at Lower Tabor Creek can be explained by the fact that, compared to the 

other sites, it was the most sinuous and confined, had the greatest bankfull width, slope, and 

mean stream power. However, Dry Creek had the greatest density of damaged riparian trees per 

hectare of valley floor. Additionally, forest damage tended to be greatest in reaches with the 

largest drainage areas. At all the sites, damaged riparian trees generally aligned with the main 

channel or chute flow direction and were not in jams. Jams were only present between the main 

channel and chutes and on the outside of channel bends.  

This study presents data that can help better assess and predict ecological disturbances in 

riparian forests, such as extreme flooding, and can be used to support land management practices 

in Mark Twain National Forest in southern Missouri. UAVs can be a useful tool for monitoring 

forests and more efforts should be made to optimize image collection and processing procedures 

to improve UAV applicability and precision. Few studies have previously reported on the 

relationship among riparian forest, large woody debris, and large floods in the Ozarks, and across 

the Midwest. This study contributes to our understanding of how floods impact riparian forests in 

relationship to geomorphic variables. Increased flood risks due to climate change, may increase 

the demand for more studies in the future.  
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