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ABSTRACT

Hydrologic disturbances due to land use and climate effects can disrupt river form and increase
sediment transport. Ozark streams have been experiencing the effects of accelerated channel
erosion on coarse sediment delivery and gravel bar deposition since the onset of early European
settlement in the late 1800’s. Little attention has focused on understanding the fate of fine-
grained sediment released by upland soil and headwater channel erosion and the potential for
storage as legacy deposits on floodplains. Legacy deposits are attributed to human disturbances
as the result of land clearing and agriculture that increase runoff, soil erosion, flooding, and
sediment supply in watersheds. Big Barren Creek (BBC) watershed (191 km?) drains the Salem
Plateau in the Ozark Highlands in south eastern Missouri. The watershed was heavily logged
between 1880 and 1920 and stream channelization practices on farmland in the area began as
early as 1950. Today about % of the watershed area is within the Mark Twain National

Forest. This study assesses the occurrence of fine-grained alluvial deposits along BBC and its
tributaries and characterizes the spatial distribution and history of legacy sedimentation on
alluvial landforms. There were four conclusions: (i) Fine-grained legacy deposits occur in BBC
and are distributed non-uniformly upon channel, floodplains, and terrace landforms; (ii) Rates of
post-settlement deposition from 1890-1950 were highest in upper BBC (~0.45 cm/yr) where the
effects of historical timber harvest were most prevalent and decreased downstream to 0.29 cm/yr
in middle BBC; (iii) Rates of post-1950 sedimentation were highest in lower BBC (~0.80 cm/yr)
due to increased sediment supply from upstream head-cutting, channelization, and lateral bank
erosion in disturbance zones; and (iv) In response to human-induced watershed disturbance,
BBC has generally undergone a transition from a multi-threaded channel to a single channel
form over the past century.

KEYWORDS: legacy sediment, disturbance, fluvial geomorphology, sedimentation rates,
cesium-137, buried a-horizons, buried root crown dendrochronology, floodplain
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INTRODUCTION

Watershed disturbances due to human activities can lead to hydrologic regime changes
that modify channel form and sedimentation process (Knox, 1977; Simon and Hupp, 1986;
Simon and Rinaldi, 2006; Wilkinson and McElroy, 2007). As global populations continue to
increase, so does the world’s demand for food, land, and natural resources. In the wake of this
increased global demand for resources, we can expect further and more dramatic changes to both
watershed characteristics and hydrologic regimes globally. Some of the most extreme changes
may be observed at the local-scale where hydrologic disturbances due to land use and climate
effects can disrupt river form and dramatically increase sediment transport and deposition rates
within river systems (Meade and Trimble, 1974; Knox, 1977; Knox, 1987; Walling, 1999;
Shepard et al., 2011; Ruesser et al., 2015; Pavlowsky et al, 2017). The role of humans as
important geomorphic agents is a well-recognized concept in landscape disturbance studies. It
was first introduced by George Perkins-Marsh in 1864 who explained how deforestation and
subsequent soil erosion were responsible for changes to flooding, channel morphology, and
sedimentation patterns in North American rivers, and has since provoked continuing research on
the effect of human activity on landscape development and river systems (Meade and Trimble,
1974; Knox, 1977; Knox, 1987; Jacobson and Coleman, 1986; Beach, 1994; Walter and Merritts,

2008; Pavlowsky et al., 2017).

Much of the annual sediment load produced worldwide is the result of anthropogenic
activities and modifications to the landscape for urban, agricultural, or natural resource
production (Nir, 1983; Hooke, 1994; Wilkinson and McElroy, 2007). Nir (1983) estimated

annual global rates of sediment erosion due to anthropogenic activities like forest clearing,



grazing, agriculture, mining, and urban construction to be an approximate of 1.73 x10™* G t/yr.

In 1994, it was estimated that human contribution to sediment removal and deposition to the
world’s interior and ocean basins had reached 40-45 Gt annually, or 41% of the current global
sediment load at that time (Hooke, 1994). For comparison, previous prehistorical sediment loads
have been estimated at 24 Gt per year and largely relate to glacial sediment transported by rivers
in the Pleistocene (Hooke, 1994). In 2007, it was reported that erosion rates occurring in
response to global agricultural activities alone was upwards of 75 Gt/yr while natural sediment
fluxes accounted for only 21 Gt/yr (Wilkinson and McElroy, 2007). Moreover, it has been
suggested that the accumulation of post-settlement alluvium in tributary channels and floodplains
globally is occurring at a mean annual rate of 12,600 m/my making it the most important
erosional/ depositional geomorphic process currently shaping the surface of the Earth (Wilkinson

and McElroy, 2007).

Similarly, estimates of human contribution to global landscape change, approximated by
terrestrial sediment flux, have been shown to meet (or exceed in some cases) prehistoric
sediment fluxes occurring during major geologic transitory periods such as between the
Pleistocene and Holocene periods (Wilkinson and McElroy, 2007; Syvitski and Kettner, 2011).
Syvitski and Kettner (2011) approximate global coastline sediment fluxes for pre-Anthropocene
and Anthropocene (late 21% century) conditions, and found that pre-Anthropocene fluxes
averaged approximately 15.1 + 0.5 Gt/ yr while Anthropocene fluxes averaged about 12.8 £ 0.5
Gt/yr. However, when taking into consideration the amount of global terrestrial sediment unable
to reach ocean basins trapped by dams and diversions, the average sediment flux for
Anthropocene conditions far exceeds coastal sediment flux during pre-Anthropocene conditions

(Syvitski and Kettner, 2011). With Anthropocene conditions defined in this context as the



conditions present during a period of geologic time in which the Earth is affected or modified by

human activities inducing environmental change on a global scale (Lewis and Maslin, 2015).

In general, changes to watershed characteristics influence the rates and patterns of
sedimentation and also govern the distribution of runoff and control channel patterns (Costa,
1975). As a result, human activity is now also widely recognized as a major driver of hydrologic
and geomorphic channel adjustments worldwide (Gilbert, 1917; Jacobson and Primm,1997;
James, 2013; Pavlowsky et al., 2017; Simon and Rinaldi, 2006). In the U.S. alone, over $1
billion is spent annually to manage and restore streams that are affected by channel instability
resulting from land use disturbance (Bernhardt et al., 2005). Most of these channel changes are
caused by disturbance-related indirect increases in runoff rate which cascade into increases in
soil erosion rate and channel instability. Following increases in erosion and channel instability

downstream floodplains and channels will begin to aggrade (Pavlowsky et al., 2017).

Human-derived sediment is distinct from naturally deposited sediment and is commonly
referred to as legacy sediment (Donovan et al., 2015; Fitzpatrick et al.,2007; James, 2006, 2010,
2013; Niemitz et al., 2013; Novotny, 2004; Pavlowsky et al., 2010; Pavlowsky et al., 2017).
Legacy sedimentation is broadly defined as intense episodes of accelerated floodplain or channel
deposition resulting from anthropogenic activities that increase runoff and erosion (James, 2013;
Pavlowsky et al., 2017). Legacy deposition, also referred to as anthropically-derived alluvium, is
formed by landscape disturbances during the post-colonial age (Niemitz et al., 2013).
Anthropogenic activities known to produce legacy sediment include land clearing and settlement,
deforestation, large-scale agricultural practices/ row-cropping, mining, urbanization, and the

construction of mill dams (James, 2013; Pavlowsky et al., 2017).



Anthropogenic sedimentation does not occur uniformly across landscapes and does not
exhibit laterally extensive characteristics, but rather it collects intermittently atop of older
landform surfaces associated with adjacent streams (James, 2013). These anthropically-derived
deposits often reside as: (i) alluvial deposits on floodplains (Knox, 1972); (ii) as ponded water
deposits upstream of dams (Walter and Merritt, 2008); or (iii) as colluvial deposits at the base of
valley slopes (Happ et al., 1940; Costa, 1975; Pavlowsky et al., 2017). Variations in the spatial
pattern of legacy sediment deposition and storage is affected by differences in sediment
production, valley floor accommodation space, and relative transport capacity of the stream
(Magilligan, 1985; James, 2013). Legacy deposits can also be categorized according to texture
and storage potential as either: (i) fine-grained legacy deposits typical of the long-term storage of
sand, silt, and clay fractions on valley floodplains or (ii) coarse-grained legacy deposits typically
characterized by short-term storage of fine to coarse-grained gravel confined to bank-full
channels (James, 1999). The study of legacy sedimentation and storage has important
implications for river-restoration, water quality, flood risks, and aquatic and riparian habitats as
the introduction of these sediments can degrade water quality and ecosystem health as well as

alter channel form (James, 2013; Donovan et al., 2015).

Early work done in the western U.S. focused specifically on processes of valley
aggradation of coarse sediment and changes to channel hydraulics following land use periods of
intensive mining practices. Gilbert in 1917 was one of the first researchers to report the influence
of hydraulic mining on sediment production and geomorphic response using catchment-scale
sediment budget techniques in the Sacramento Valley of the Sierra Nevada Range in northern
California (James, 1989). Gilbert constructed three time series of low- flow stage elevations for

three locations, two at the Yuba River, and one along Sacramento River in California. He related



the channel stages to bed elevation at each of the gauge sites and effectively equated them with
sediment loads at the respective gauge sites (James, 2013). Following these findings, Gilbert
(1917) was able to generate a sediment wave model which described alluvial response to
disturbance in terms of the movement of waves of sediment and debris following mining periods.
This wave can be described by the characteristic raising and lowering of channel bed elevations
through processes of aggradation and incision that mimic the overall input of water and sediment

introduced during a disturbance period (James, 1999).

Research documenting the influence of historical land disturbance on the production and
storage of what would later be referred to as legacy sediment generally began in the United
States in the 1930s-1940s with USDA studies on soil erosion and valley sedimentation (Happ et
al., 1940). Primary influential studies focused on the effect of large-scale agricultural practices
and resulting accelerated alluvial deposition into river valleys of the upper Midwest Driftless
area and the southern Appalachian Piedmont regions (Knox, 1972; Costa, 1975; Trimble, 1974;
Magilligan, 1985; Jacobson and Coleman, 1986; Beach, 1994; Walter and Merritts, 2008;

Wilkinson and McElroy, 2007; Wolman, 1967).

Some research drew early connections between increases in alluvial sedimentation and
shifts in channel morphology characteristics exhibited by rivers in the north-eastern U.S
following colonial settlement. It was suggested that the infill of large volumes of legacy
sediment into once stable, multithreaded, pre-colonial channels caused a transition in channel
morphology to the incised, single-threaded channels that are seen today (Trimble, 1974; Walter
and Merritt, 2008; Cluer and Thorne, 2013). Walter and Merritt (2008) found that pre-settlement
streams in the eastern United States were characterized by laterally extensive, small, multi-

threaded, or anastomosing streams which were contained within wet woodland environments.



Flow through these woodland environments was heavily influenced by small, stable, vegetated
islands rather than deep single-threaded channels. Later, the idea of a multi-threaded, pre-
settlement channel morphology in some regions was included as a pre-disturbance reference
condition in a Stream Evolution Model developed for use in stream restoration (Cluer and

Thorne, 2013).

The gradual transition from pre-settlement, multi-threaded streams, to single-threaded
streams, has allowed for a dominant pattern of contemporary legacy sedimentation to occur. This
classic model of legacy sedimentation commonly referred to as “over-bank deposition”, is the
archetypal model of fine-grained floodplain deposition experienced by most major single-
threaded river systems. This occurs where transported fine-grained sediment will over top
channel banks during flood conditions and accrete vertically on channel floodplains in
downstream valleys (Fig. 1) (Knox, 1972; Donovan et al., 2015). Increases in sedimentation rates
and changes to channel morphology are largely associated with changes to the transport and/or
carrying capacity of the channel in response to hydrologic disturbances. Specifically, legacy
sediments will be deposited and stored when transport capacity of the stream is exceeded by the
amount of sediment delivered to the channel reach, commonly expressed in terms of a sediment
storage potential ratio (James, 2013). The sediment storage potential ratio can be used to predict
whether legacy sediment will be recruited and transported (Ds/Tc < 1), or deposited and preserved
with longer residency times (Ds/T¢>> 1), where Dy is sediment delivery and T, is transport
capacity (James, 2013). As a result, fluctuations in rates of runoff and erosion, influenced by
land use, are mirrored in changing rates and volumes of historical sediment storage in river

valleys (Costa, 1975).



The composition, distribution, and magnitude of legacy deposits on floodplains can be
used as an indicator of watershed disturbance. Fine-grained legacy deposition is frequently
associated with contemporary overbank floodplain features and riparian zones along stream
channels (Knox, 2006; Owen et al., 2011). The study of accelerated legacy sediment deposition
remains a valuable means for understanding the severity and level of land use related disturbance
(James, 2013; Knox, 2006). Historical floodplain deposits contain sedimentary records of both
vertical and lateral channel adjustments reflecting variations in watershed conditions caused by
past disturbances (Jacobson and Coleman, 1986; Knox, 1972, 1977, 1987; Macklin and Lewin,
2008, Owen et al., 2011). Legacy floodplain deposits can be interpreted to understand watershed
response to historical land use by using stratigraphic markers and horizons to date the deposits
(Walling and He, 1997). Floodplains are very susceptible to upstream watershed changes and
often serve as either long-term or temporary sinks for contaminated soil and disturbance-derived
sediment (Knox, 2006). Disturbance-derived sediment deposited on floodplains ultimately ends
up preserved as legacy sediments within the floodplain where residence times are on the order of

decades to thousands of years (Owens, 2005).

Forest Controls on Hydrology

Forest canopies act as shelter to upland soils and shield them from the effects of intense
rainfall, runoff, and erosion (Leigh, 2016). Under ideal forest conditions the processes of surface
erosion are minimal due to increased capacity for infiltration and the inability for Hortonian flow
processes to occur (Hewlett et al., 1977; Leigh, 2016). In mature, forested, watershed systems,
precipitation is instead infiltrated and passed through subsurface pathways as saturation overland

flow (Leigh, 2016). However, in many areas this is simply not the case due to the influence of



both natural and anthropogenic disturbances that work to disturb forest cover. Disturbances in
forest cover subsequently result in increased exposure of bare soil, the reduction of infiltration
capacity, and the accelerated erosion and deposition of sediments to downstream floodplains
(Leigh, 2016). As a result, floodplains within these watersheds serve to store and record
episodes of past forest disturbance via fluctuations in sedimentation patterns (Leigh, 2016). In
general, it is known that large scale timber harvest and clear-cutting drastically increase
floodplain sedimentation patterns due to mass vegetative loss that would otherwise prevent soil
loss from processes of rain drop impact, sheet flow, and rilling processes (Walling, 1987; Knox,

2006; Leigh, 2016).

Review of Overbank Legacy Deposits by Region

The influence of human activities on the landscape and its subsequent release of
anthropogenic sediment has been a well-studied topic in the United States (Table 1). Historically,
methods to measure the effect of such activities on the landscape have included watershed-scale
sediment budgets (Happ, 1944; Owens, 2005), measurements of terrestrial sediment flux (Hooke,
1994; Syvitski and Kettner, 2011; Wilkinson and McElroy, 2007), and the calculation of legacy
sedimentation rates (Donovan, 2015; Jacobson and Coleman,1986; Knox, 1987, 2006; Lecce and

Pavlowsky,2014; Magilligan,1985; Meade and Trimble,1974;Trimble and Lund,1982).

As previously mentioned, Gilbert (1917) attempted to quantify the effects of hydraulic
mining on alluvial sedimentation and valley aggradation. He reported an enormous rate of post-
mining valley aggradation of approximately 5.8 x 107 cubic meters of sediment in 27 years
which equated to nearly a 1.7 ft net elevation gain of the water surface of the ship channels

feeding into the San Francisco Bay.



Some of the major contributions to watershed disturbance studies stem from the legacy
sediment research done in the Midwest Driftless Area occurring after the 1800’s (Knox, 1972,
1977, 1987, 2006; Magilligan, 1985; Lecce and Pavlowsky, 1997; Lecce and Pavlowsky, 2001)
(Table 1). Happ (1944) provided some of the first examples of post-settlement sedimentation
occurring in the Midwest Driftless Area. His estimates of agricultural-induced sedimentation in
the Coon Creek basin in the northern Driftless Area of Wisconsin calculated legacy rates for in
channel and floodplain aggradation of over 1.52 cm/ yr. Later, Trimble and Lund (1982),
reported rates of post-settlement legacy sedimentation occurring in the same area of the Coon
Creek basin of Wisconsin ranging from 1.5-15 cm/ yr suggesting an increase in overall

disturbance induced sedimentation.

In response to agricultural and land management practices in the eastern Appalachian
Piedmont, significant accumulations of anthropogenic-derived sediment were deposited as
reworked deposits on floodplains and aggraded channels (Donovan, 2015; Jacobson and
Coleman, 1986; Lecce and Pavlowsky, 2014; Meade and Trimble, 1974; Walter and Merritts,
2008). Research by Jacobson and Coleman (1986) in the Loch Raven, Prettyboy, Atkisson, and
Lake Roland reservoirs in the Appalachian Piedmont region of Maryland revealed historical rates
of post-settlement deposition occurring before 1963 at 0.5- 20.1 thousand tonnes/km?*/yr and
rates of historical deposition occurring after 1963 at 0.2-30.0 thousand tonnes/km?/yr. Walter and
Merritts (2008) investigated the effect of historical mill dam emplacement in the United States
and found that approximately 1-5 m of sediment collected upstream of tens of thousands of 17" -
19% century mill dams. Estimates of post-settlement alluvium in other watersheds in the
Appalachian piedmont include the Little Buffalo and Dutch Buffalo creeks in North Carolina.

Short term rates of sedimentation estimated in these basins averaged 2.7 cm/yr during the most



intensive gold mining period (1864-1856) and nearly tripled the long-term average rate of 0.9

cm/yr (Lecce and Pavlowsky, 2014).

The Ozark Highlands Region of the central United States has been subject to a long
history of land use changes dating as far back as the late 1700’s when the first waves of
European settlers moved into the area (Jacobson and Primm, 1997) (Table 2). The geology of the
Ozarks encouraged frequent settlements in the low-lying fertile valleys, below the higher relief,
carbonate ridges overlain by a thin layer of soil (Jacobson and Primm, 1997). Valley bottoms
were clear cut and developed for agricultural purposes, while forested ridges were economically
lucrative timber producing areas throughout much of the late 1800’s to early 1900’s (Jacobson
and Primm, 1997). Smaller-scale, managed, logging practices persist today on private and federal
Ozark forest lands. In addition, research involving repeat aerial photography in areas of the
Ozarks indicate that stream channelization practices along private-inholdings have occurred
since at least 1960 and still persist today (Bradley, 2017b) (Fig. 2). Changes to subsequent
stream morphology have also mimicked the transition from wide, natural channels to deeper,

narrower stream channels lined by levees (Fig. 3).

More recently, the release of legacy deposits in response to post-colonial anthropogenic
activities has been investigated in the Ozark Highlands of the central U.S, but mainly focus on
agricultural induced land disturbance (Owen et al., 2011; Pavlowsky et al., 2017; Ray et al.,
1998). Previous studies on human influence on channel morphology and sedimentation in the
Ozarks have primarily focused on historical gravel waves in channel bed and bar deposits
produced by land disturbance during the European settlement periods from 1850 to 1900
(Jacobson, 1995; Jacobson, 2004; Jacobson and Gran, 1997; Jacobson and Pugh, 1992; Jacobson

and Primm, 1997; Jacobson and Pugh, 1997; Martin and Pavlowsky, 2011; Shepard et al., 2011).
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Only a few studies have documented overbank floodplain legacy deposits along main channel
segments associated with historical agricultural disturbance (Carlson, 1999; Owen et al. 2011;
Pavlowsky et al., 2017; Ray, 2009; Trimble, 2001; Womble, 2009) (Table 3). Owen et al. (2011)
investigated historical deposition in the James River basin of southwest Missouri and found post-
settlement agricultural-induced deposition rates of 0.41cm/yr and 0.34 cm/yr following the land
management era after the 1950’s. Pavlowsky et al. (2017) used mining tracers to investigate rates
of historical overbank deposition resulting from the agricultural period in Big River, southeast
Missouri. They found rates of post-settlement deposition ranging from 1.3- 3.0 cm/yr. Fewer
studies have addressed legacy sedimentation associated with urban disturbance (Rodgers, 2005;
Shade, 2003). However, no studies in the Ozarks have yet addressed (1) the possibility of legacy
sediment on floodplains of headwater tributaries and (2) the production of legacy deposits

associated with historical logging practices.

This study investigates the effects of historical land use disturbance within the Big Barren
Creek watershed in southeast Missouri on the occurrence and spatial distribution of fine-grained
legacy deposits. Big Barren Creek watershed is a heavily forested headwater tributary to the
Current River drainage basin. This area has undergone a long series of land use changes since the
onset of European Settlement, the most notable of which began in the mid 1800°s with historical
exploitive logging practices (Jacobson and Primm, 1997). During this time, large expanses of
pine and oak forest were cut and transported via extensive networks of constructed tram beds and
logging roads. Since 1935, The U.S. Forest Service has managed over 78 % of Big Barren Creek
watershed as a part of the Eleven Point Ranger District of Mark Twain National Forest. The
remaining 22% of land is made up of private-inholdings with most properties located along Big

Barren Creek. Local landowners eventually began channelizing the stream as early as the 1960’s
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in some areas of Big Barren Creek to mitigate the negative effects of increasing flood frequency
in the area (Bradley, 2017b). It is for this reason that this watershed provides a suitable natural
laboratory to assess the impact of historical land use on watersheds characterized by heavy forest
cover. Jacobson (2004) suggested the effects of logging and localized farming practices on the
response of channels in heavily forested areas were associated with alterations in hydrologic
characteristics, degraded water quality, and changes to sediment budget characteristics.
Nevertheless, these aspects of forest and channel change in the Ozarks have not been studied in
detail. To better understand these effects, it is necessary for long-term, qualitative assessments of
stream response to disturbances like historical logging at the drainage-basin scale (Jacobson,

2004).
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PURPOSE AND OBJECTIVES

Legacy deposits have previously been used to determine sedimentation rates in response
to historical watershed disturbance (Knox, 1997, 2006; James, 1999; Reusser et al., 2015;
Schuller et al., 2004). Interpreting the sedimentary record contained within floodplain legacy
deposits has proven to be a useful tool in assessing and constraining the extent and degree of
watershed disturbance following historical land use periods. The purpose of this study will be to
investigate the possibility of legacy sedimentation occurring as in-channel aggradational fill or
fine-grained deposition on floodplains of main stem and headwater tributaries in Big Barren
Creek, and to determine the sedimentation rates of legacy deposits associated with historical

logging and recent channelization practices.

This study will address the following three questions: 1) What is the form, distribution,
and rate of deposition of fine-grained floodplains in an Ozark forest watershed? 2) Are legacy
sediments deposited on floodplains due to logging, agriculture, and channelization disturbance?
And 3) If legacy deposits occur, how do they affect present day geomorphic and ecologic
processes? Furthermore, this study will emphasize human effects on headwater stream
sedimentation and related channel response in a forested, relatively mountainous watershed in

the Ozark Highlands.
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BENEFITS OF RESEARCH

This study will be the first to investigate the effects of historical logging and farming
activities on fine-grained legacy deposition and associated geomorphic changes in river systems
in the Ozarks Highlands. Additionally, this research will help to broaden our understanding of
human impacts on river systems and build on the knowledge reflecting the degree to which forest
disturbance can affect channel form, stability, and floodplain function (Jacobson, 2004).
Understanding geomorphic and hydraulic channel responses to disturbance can be important
predictors for continued channel recovery and help in creating solutions to reduce the influence
of channel instability (Letapie et al., 2014). By bettering our understanding of the cause-effect
relationships on the watershed in response to disturbance, more sustainable land use practices
can be implemented in the Ozark Highlands. Continuing research on both historical and current
land use practices and their long-term effects on the watershed will help to create a dialogue with
public and private landowners alike on the health and stability of the local streams and the

important ecosystems they provide.
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Figure 2. Channel history of Big Barren Creek. Comparison of 1939, 1966, and 2013
aerial photographs of the upper Big Barren Creek stream segment. No disturbance to the
stream is detected in the 1939 photograph, but channelization is indicated as early as 1966
where there is a prominent gravel reflectance. The 2013 aerial photo shows a continuation

of channelized stream disturbance.
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STUDY AREA

Regional Location and Physiography

Big Barren Creek drainage basin is 40 km in length and drains 191km? of the Ozark
Highlands in SE Missouri. It covers parts of Carter (80%), Oregon (3.5%), and Ripley (15.5%)
Counties and is within the Eleven Point Ranger District of Mark Twain National Forest (Fig. 4).
Big Barren Creek is located within the Salem Plateau, a region dominated by vast rolling uplands
and large resistant carbonate ridges (Panfil and Jacobson, 2001). The Salem Plateau is the central
most province of the sub-divided Ozark Highlands lying north of the Boston Mountains, east of

the St. Francois mountains, and west of the Springfield Plateau (Panfil and Jacobson, 2001).

Geology and Soils

The Big Barren Creek drainage basin is underlain by the Gasconade Dolomite, Jefferson
City Dolomite, and Roubidoux formations as shown in (Fig. 5). The Jefferson City Dolomite is
the uppermost formation capping the regional geologic sequence and is comprised of dolomitic
carbonate rocks interbedded by sandstone and chert (Panfil and Jacobson, 2001). Underlying the
Jefferson City Dolomite is the Roubidoux formation. This formation is characterized by its ridge
forming resistant sandstone units interbedded by lesser units of dolomite and chert (Panfil and
Jacobson, 2001; Thies, 2017). Beneath the Roubidoux formation lies the Gasconade Dolomite.
The Gasconade is the lowest carbonate unit in the Ozark Upland geologic sequence and is known
for its extensive karst development throughout the region (Panfil and Jacobson, 2001). Big

Barren Creek lies within the Wilderness-Handy Fault Zone, an assemblage of northeast-
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southwest trending faults which control the formation of steep bedrock bluffs in the lower and
middle parts of the watershed (Weary et al., 2015). Where jointed and fractured limestone and
dolomite are exposed at the surface, rill development and headward channel migration facilitate
the initiation of stream channels. Chert rich limestone and dolomite within the Ozark Highlands
may have helped the initiation of stream channels and directly influenced drainage patterns and

densities within these watersheds (Splinter et al., 2011).

In 1973, the U.S. Forest Service completed a detailed 1:253,440 scale soil map of Mark
Twain National Forest that included parts of Carter, Oregon, and Ripley counties which included
detailed representations of the soils specific to Big Barren Creek. Big Barren Creek (BBC) drains
four main soil associations (Table 4, Fig. 6). Over 55% of the watershed is covered by the
Captina-Clarksville-Macedonia association (Fig. 7). The soils in this association are gently-
sloping to moderately-steep soils, some of which have a fragipan, and others gently-sloping to
very steep soils that are cherty throughout (Gott, 1975). The Clarksville-Poynor-Doniphan
association covers over 25% of the lower portion of Big Barren Creek watershed and is
characterized by gently sloping to very steep soils that have a cherty surface layer and a cherty/
clayey subsoil (Fig. 8) (Gott, 1975). Approximately 16.8% of the soils belong to the Clarksville-
Coulstone association which can be described as gently sloping to very steep soils that are cherty
throughout. These soils are commonly found in the northern most extents of the watershed (Gott,
1975). The remaining 2.6% of soils in Big Barren Creek belong to the Poynor-Macedonia-
Captina association and are isolated to a small area in the lower central locations of the
watershed near the Carter and Ripley county border. These soils are typically gently sloping to
very steep soils that have a cherty surface layer and a clayey subsoil, and gently-sloping to

moderately steep soils, some of which have a fragipan (Gott, 1975).

22



The main soil types found within the Salem Plateau were formed by the intense
weathering of carbonate and chert-rich bedrock units and are classified as varying alfisol and
ultisol units (USDA, NRCS 2006). Most soils in Big Barren Creek are upland ultisols which
cover over 86% of the watershed. These soils are mature silty soils with a thin- A-horizon and
shallow depth to bedrock on most hillslope and flat upland areas. Alfisols are the second most
dominant soil type at 10% of the total soil cover and occur in stream valleys and forested
headwater tributaries (Table 5, Fig. 8). Floodplain soils are characterized by mostly alfisols with
smaller amounts of entisols nearest to streams. These two soil orders describe most of the

alluvial soils series in BBC.

There are 20 different soil series in Big Barren Creek with seven of those described as
fine-grained alluvial soil series (Table 6, Fig. 9). The alluvial soil units include floodplain units
such as the Secesh, Sandbur-Wideman-Relfe, Tilk-Secesh, Relfe-Sandbur, and the Midco, and
terrace units such as the Bearthicket and Higdon (Table 7). The majority of the watershed’s
mapped alluvial soil acreage is characterized by the Tilk-Secesh Complex at over 29.8% of the
total alluvial soil series and is typical of Big Barren Creek’s tributary regions that feed into the
main stem. This unit is occasionally flooded (ponded > 5 to 50 times in 100 years) and the E
horizon indicates leaching of the upper soils and formation of more mature horizons beneath it
including the Bt horizon. The presence of the Bt horizon in this series indicates it has been
developing for roughly a few thousand years. Approximately 24.4% of the watershed is
described by the Secesh silt loam and can be found as rarely flooded floodplain and terrace units
surrounding the Tilk-Secesh and Midco floodplain units. This series has a high level of solum
differentiation with an A/BE/B horizon profile containing 5 different Bt horizons underneath it’s

BE horizon. The Midco is a gravel rich occasionally flooded floodplain unit that covers
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approximately 13.9% of the watershed. This unit is under differentiated with an A/C1/C2/C3
profile with an extremely thin solum layer under 10 inches. The Bearthicket silt loam covers
approximately 17.5% of the watershed and can be found on terrace units in along the mainstem
and headwater tributary regions. This unit is rarely flooded and highly differentiated with an A/B
horizon profile containing 5 different Bt horizons. The Relfe-Sandbur is a frequently flooded,
excessively drained floodplain unit typically comprised of sand and gravelly alluvium. Due to its
landscape position it is highly under differentiated with a Ap/C1/C2/C3/C2/CS profile. Lesser
units such as the Sandbur-Wideman-Relfe and Higdon contribute to the total alluvial soil series
cover at 0.7% and 0.6% respectively. Examples of typical alluvial chrono-sequences for the

above units are given for upper and lower Big Barren Creek in (Fig. 10).

Most alluvial soil units classified as frequently flooded can be found in the tributary
regions of Big Barren Creek and are classified as varying silt and sand units (Fig. 11). The
majority of occasionally flooded alluvial units are characterized by gravel rich units
predominately surrounding the main stem regions of Big Barren Creek with some found in the
tributary regions in the lower portion of the watershed. Lastly, the alluvial soils classified as
rarely flooded were primarily characterized by silt rich units which often surround the floodplain
units along the main stem of Big Barren Creek. According to USDA soil series descriptions, no

buried soils were associated with any of the alluvial soil series common in Big Barren Creek.

Climate and Hydrology

Big Barren Creek is subject to a temperate continental climate characterized by eastward

traveling storm systems and northward moving moist air masses off the Gulf of Mexico (Panfil
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and Jacobson, 2001). Seasonal weather patterns often include powerful thunderstorms and
intense rain events that account for much of the area’s annual rainfall totals (Panfil and Jacobson,
2001; Pavlowsky et al., 2016). Southeastern Missouri experiences a mean annual precipitation of
approximately 112 cm/ yr and has an average annual temperature of approximately 14.4°C
(Adamski et al., 1995; Pavlowsky et al., 2016). In a recent study done by Pavlowsky et al.
(2016), it was reported that flood frequency and intensity and frequency of storms in Big Barren
Creek have increased dramatically in the last 30 years when comparing rainfall records from the
two most recent 30-year rainfall records from six nearby weather stations. More specifically, the
number of days of intense rainfall with greater than 3 in of rainfall per day has increased.
Seasonal analysis of the 60-year rainfall period indicates that higher magnitude rain events tend
to occur in the months of spring and fall. However, the frequency of high magnitude rainfall
events has been increasing for the spring, winter, and summer months over the last ten years.
Overall, rainfall records show a general increase in annual rainfall totals over the last decade
suggesting a historical wet period. This research suggests climate shift-induced increases in
frequency and intensity of rainfall events over the past decade may be causing more overbank
flooding events, channel instability, and excess gravel aggradation in streams in Big Barren
Creek (Pavlowsky et al., 2016). Recently in 2017, the National Weather Service reported that the
Current River in Van Buren, experienced the largest flood event in 100 years, cresting at over

37.2 ft high, a full 8 ft higher than the record stage of 29 ft set in 1904.

Most of the Ozark Highlands contains expansive karst aquifer systems within the thick
sequences of Paleozoic carbonates covering the region (Jacobson, 2004). The region’s karst
dominated lithology creates a unique hydrologic setting characterized by abundant ephemeral or

under-drained stream networks (Panfil and Jacobson, 2001). Much of the water received by
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precipitation in the Ozark Uplands infiltrates into the subsurface karst system and travels via

conduits to reemerge as springs in valley bottoms (Jacobson, 2004).

Settlement and Land Use History

Pre-settlement Vegetation. Prior to European Settlement, approximately 70 percent of
the state of Missouri was covered by vast expanses of forested land with over 6.6 million acres of
forest belonging to regions of the Missouri Ozarks (Cunningham, 2006; Liming, 1946). The most
noteworthy of these areas was known as the Courtois Hills, an extensive area of rugged, pine-
covered hills in the southeastern Ozarks covering Big Barren Creek watershed in parts of Carter,
Oregon, Ripley, Shannon, Reynolds, Crawford, Dent, Iron, Wayne, Butler, and Madison
Counties (Cunningham, 2006). Pine lands were fairly open, containing little to no underbrush
except for the occasional plot of native bluestem grass (Schizachyrium scoparium) or oak sapling
(Martine and Presley, 1958). Pine volumes averaged 4,000 board feet per acre, while particularly
well-established stands contained up to 25,000 board feet per acre (Hill, 1949; Cunningham,
2006).

Fire History. Before the onset of early European settlement in the Ozarks, Native
American peoples had been routinely setting fires to the land to maintain open grassland ranges
and reduce fuel loads (Jacobson and Primm, 1997; Stambaugh and Guyette, 2006). After
European settlers migrated to the Ozarks, they began implementing fire suppression techniques
to combat the detrimental effects of destructive wild fires on their fields, pastures, and crops
(Jacobson and Primm, 1997). In addition, timber production in Ozark counties was starting to
boom and wildfires threatened the fast-growing industry. Controlled burns were reintroduced as

a forest management technique after the decline in timber production in the 1920’s left much of
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the economically viable timber stores depleted and much of the land unfit for agriculture and
grazing (Jacobson and Primm, 1997). Fire records show that forest fires occurred at a mean
interval of approximately 17.7 years in the pre-population period, 12.4 years in the Native
American population period, and 3.7 years in the early European Settlement period up through
the early 20" century until cultural values changed again to favor fire suppression (Guyette and
Larsen, 2000; Stambaugh and Guyette, 2006). Historical accounts recorded by Jacobson and
Primm (1997) reveal overall increases in the amounts of erosion and frequencies of larger floods
that occurred in burn years in comparison to non-burn years. Since 2000, the U.S. Forest Service
began implementing prescribed burning of Mark Twain National Forest burning over 30,000

acres of forest per year for ecological restoration and hazardous fuel load reduction.

Clearcutting and Agriculture. The Ozark Mountains have a long history of land use
changes dating as far back as the late 1700’s when the first waves of European settlers moved
into the area (Jacobson and Primm, 1997). The geology of the Ozarks encouraged frequent
settlements in the low-lying fertile valleys, below the topographically high, rugged, carbonate
ridges (Jacobson and Primm, 1997). Valley bottoms were clear-cut and developed for
agricultural purposes, while forested ridges and slopes were economically lucrative timber-
producing areas during the late 1800’s to early 1900°s when increasing populations started
implementing large-scale agrarian practices, grazing, and clear-cutting operations (Jacobson and
Primm, 1997). Populations in Ripley and Oregon counties didn’t start to grow until around the
1880’°s when populations grew to around 5,000 people (Cunningham, 2006). Populations in
Carter county were slower to take off and reflect the success of the timber industry in the area.

Populations in Carter county grew to around 5,000 people in 1890 (Cunningham, 2006).
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Timber Harvesting. Timber production in the Ozarks began following the introduction
of rail car transportation in the 1870’s and peaked from the 1880°’s until approximately 1920
Table 8 (Jacobson and Primm, 1997). Timber production began to take off significantly in 1879
following the Missouri Lumber and Mining Company’s decision to open its first large sawmill
operation in the city of Grandin in Carter County, Missouri (Cunningham, 2006). After the
Railroad had finished constructing lines into Grandin, this mill was the primary timber producer
in the region (Cunningham, 2006). The Missouri Labor Bureau reported that in 1904, over 60
million board feet of lumber was harvested from Reynolds County alone just north of Big Barren
Creek watershed (Guyette and Larsen, 2000). Reynolds County was just one of the three primary
timber production counties in the Ozarks including both Carter and Shannon counties (Guyette
and Larsen, 2000). The Ozarks was responsible for over 71 percent of the state of Missouri’s
round wood tree production (Jacobson, 2004). During the height of the Timber Boom in 1899,
Carter County MO was clear-cutting over 70 acres of forest a day at maximum capacity
(Jacobson and Primm, 1997).

By the early 1900’s timber production in Carter County began to slow down and
eventually in 1909 the Grandin Mill closed and moved to West Eminence in Shannon County
Missouri (Cunningham, 2006). By the 1920°’s, most of the marketable shortleaf pine in the
Ozarks had been exhausted (Jacobson and Primm, 1997). At the end of the Grandin-based
sawmill’s final year of operation in 1909, it had cut over 213,017 acres of forest land (Galloway,
1961; Cunningham, 2006). Throughout the main logging period, loggers constructed extensive
networks of tram lines that were needed to transport logs and materials to and from cutting sites.
These tram bed features persist to this day and can be found throughout the headwater regions of

Big Barren Creek. Work done by Bradley (2017a) reported that the extensive tram construction
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occurring during the logging period still influences the channel morphology and stability of
tributaries in Big Barren Creek today.

Forest Management. The U.S. Forest Service controls approximately 78% of the Big
Barren Creek watershed. Management of this land by the Forest Service followed the 1935
purchase of over 3.3 million acres of land designated as the Mark Twain National Forest in
Missouri. In the 1950’s forest managers began implementing cyclic timber harvesting. This
practice was a much less intense form of logging, a process where many trees and branches were
left to serve as ground cover to reduce the effects of raindrop impact, runoff, and erosion. Since
2000, the Forest Service, as a part of the Missouri Pine-Oak Woodlands Restoration Project, has
been using prescribed fire management in combination with tree planting to help restore the
shortleaf pine population that was heavily depleted during the timber boom period in the 1880°s
to early 1920’s (“U.S. Forest Service”). Prescribed fire was deemed an effective tool to reduce
understory fuel loads. The majority of Big Barren Creek watershed is comprised of deciduous
forest with evergreen forested areas throughout. Small areas of private cultivated land make up
the valley floor (Fig. 12). In Big Barren Creek watershed, approximately 40% of the private

forest land is owned by both full-time or part time farmers (Raeker et al., 2011).

Stream Channelization. Stream modification in the form of channelization has been a
method implemented by engineers and private land owners alike to reduce flood magnitude and
frequency and control destructive bank erosion (Simon and Rinaldi, 2006). Analysis of repeat
aerial photography in the Ozarks has indicated channelization of the stream occurring as early as
the 1960’s on private land (Bradely, 2017) (Fig. 4). This practice often involves the straightening
of the channel and the removal of material from the stream bed by dredging (Fig. 2). This

regularly results in direct increases in both channel capacity and stream gradient, and indirect
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increases in bed load capacity and discharge (Simon and Rinaldi, 2006). Disturbance within
channelized reaches in the form of bank destabilization will often times be accompanied by
waves of disturbance felt upstream and downstream. Upstream areas may experience zones of
accelerated degradation and aggressive head-cutting (Simon and Thomas, 2002), while
downstream reaches may experience zones of accelerated aggradation (Simon and Rinaldi,
2006). Natural stream systems are characterized by in-stream vegetation and flow obstructions
and have low banks with a high level of connectivity between the stream and its adjacent
floodplains allowing for the effective dissipation of flow velocity (Theis, 2017). Channelized
stream reaches have characteristically deep, smooth channel beds, with steep banks that prevent
connectivity between the stream and adjacent floodplains effectively concentrating flow (Wohl,

2014).
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Table 4. Large-scale soil associations in Big Barren Creek Watershed.

Soil Association Acres Percent of Alluvial Soils
Captina-Clarksville-Macedonia 26,011 55.2
Clarskville-Poynor-Doniphan 11,907 253
Clarksville-Coulstone 7,882 16.7
Poynor-Macedonia-Captina 1,314 2.8

Total 47,114 100.0

Table 5. Soil orders in Big Barren Creek Watershed.

Soil Order Acres Percent of Alluvial Soils
Ultisol 40,491 85.9

Alfisol 4,875 10.3

Entisol 1,564 33

Mollisol 57 0.1

Total 47,114 100.0
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Table 7. Alluvial Soil Series in Big Barren Creek Watershed.

Alluvial Soil Series Acres Percent of Alluvial Soils
Secesh 663 24.4
Bearthicket 477 17.5
Sandbur-Wideman-Relfe 20 0.7
Tilk-Secesh 812 29.8
Relfe-Sandbur 356 13.1

Midco 379 13.9

Higdon 15 0.6

Total 2,722 100.0

Table 8. Land use History of Big Barren Creek Watershed

Event

Time Period

European Settlement

The Railroad begins building rail lines into Grandin

Missouri Lumber and Mining Company opens in Grandin,
Carter CO

Height of Timber Boom Period in Carter CO

MLMC Grandin Mill closes and moves to Shannon CO

U.S. Forest Service purchases 3.3 million acres designated as
Mark Twain National Forest

U.S. Forest Service implements "Cyclic Timber Harvesting"
management practices in Big Barren Creek

Land owners begin channelizing the stream on private property

U.S. Forest Service Begins Implementing prescribed fire
management techniques

1850

1887

1879

1899

1909

1935

1950

1960's

2000
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Figure 6. Soils patterns and landforms and subsurface material in the Clarksville-
Poynor-Doniphan association (Gott, 1975).
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Figure 7. Soils patterns and landforms and subsurface material in the Clarksville-
Coulstone association (Gott, 1975).
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Figure 10. Soil-landform relationships of alluvial soils in Big Barren Creek
Main stem (R-km 12 and 36.5). Boxes abbreviations indicate landform
position, and T2 is high terrace. The abbreviations F.F, R.F., and O.F., stand
for frequently flooded, rarely flooded, and occasionally flooded respectively.
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METHODS

A combination of field, laboratory, and geographical information system (GIS)
techniques were used to complete this study. The goal of this chapter is to describe the methods
used to accomplish the following research tasks: (1) determine the distribution of fine-grained
channel and floodplain forest deposits, (2) determine the spatial distribution of alluvial soils, (3)
complete subsurface analysis through soil coring and mapping, (3) use stratigraphic boundaries
such as buried soils (Ab horizon), buried trees, and C3137 to date deposits. These tasks are used
to assess the extent of disturbance in Big Barren Creek watershed in response to historical

disturbance.

Site Selection

The goal of sampling was to assess channel and floodplain form and deposits in the
headwaters, upper, middle, and lower segments of BBC to evaluate their cross-valley
distribution, downstream variation, and ages, to identify post-settlement logging legacy deposits.
These deposits were identified as reworked sand and silt sediments on top of floodplains,
benches, and terrace surfaces, often medium to dark brown in color and without structure or
texture. Sample sites were located along the 40 km stretch of Big Barren Creek and were
selected based the range of landform types, presence of fine-grained soils series derived from
WSDA web soil survey data, flood frequency maps, and ease of access to the stream. Most sites
were located along public land areas including The Nature Conservancy property, designated

natural areas, and U.S. Forest Service owned extents of Mark Twain National Forest. Where sites
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were located along privately-owned segments were granted permission for access and consent

for soil collection was obtained from local land owners.

Field Surveys and Soil Sample Collection

Cross-valley transects were surveyed at 23 sites along the main stem and tributary
branches of Big Barren Creek (Figs. 13-14). Twenty-seven total floodplain cores were collected
using either a truck mounted Giddings Rig soil corer, shovel-dug pit sampling, or open-face cut
bank sampling (Fig. 15). Sampling depths ranged from 35 — 80 cm for seven dug pits, 70- 80 cm
for five cut-banks, and 22-120 c¢m for 15 truck-mounted auger cores. Samples for all methods
were collected at intervals of 3-10 cm based on stratigraphic units encountered, and the
maximum length of the core obtained. Field data collection and surveys were completed during
four extended field visits taking place beginning December of 2017, June 2018, October 2018,

and December of 2018 (Appendix A-1).

Fine-grained sediment storage within valley alluvial landforms was estimated by using a
simple storage calculation combining channel cross-sectional information obtained by total
station, auto level, and LIDAR, with depth of fine-grained sediment refusal determined using a
tile probe. Volumes were approximated using an equation relating length of landform, depth of
fine-grained sediment, both multiplied by 1 meter, to calculate the storage volume in m? using

the following equation:

WxDxL=V (Eq. 1)

Where:
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W = landform width (m)
D = mean probe depth to refusal (m)
L = unit length (1 m)

V = Fine-grained storage volume (m3/ (m of stream length))

Landform Identification

To properly estimate fine-grained storage in alluvial landforms, both in-field and
hydraulic classification of landform features was performed. In the field, cross-section surveys
with auto-level and stadia rod were used to gauge approximate heights and widths of landform
features delineated by breaks in slope (Fig. 16). By utilizing observations of the soil and
vegetation we were able to accurately distinguish landform features. Higher landform features
containing Bt soil horizons were generally classified as terrace features, and major breaks in
vegetation and the identification of riparian areas helped to delineate channel and floodplain
boundaries. Identification of bar and bench features with changes in sediment texture also helped
to identify channel boundaries. Cross-sectional information was then analyzed in excel to double
check in-field landform distinctions using flood recurrence interval information. The tops of
floodplain surfaces in stable channels should approximately equal the stage height of a 1.5 to 2-

year flood event.

Predicting Fine-grained Storage

Previous work done by Theis (2017), utilized a USGS developed rural discharge
equation to identify the stage heights of the 2-year flood event using Hydra Flow Express

hydraulic modeling software at each of his sites. By doing this, he effectively estimated the
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approximate bankfull stage height in natural, channelized, and aggraded stream types in Big
Barren Creek for the upper half of the watershed. By modeling his reported data on maximum
depth (m) for the bankfull discharge against drainage area (km?) we were able to obtain a power
function capable of predicting max depth at any site along the channel where drainage area was
known. The following equations were used to model predicted maximum depths for both

channelized and natural reaches:
Channelized reach equation:

y = 0.5028x%4143 (Eq. 2)

R2=0.5756
Natural reach equation:

y = 0.6824x%18 (Eq. 3)

R>=0.558

where:
y = max depth

X = cross-sectional area

These predicted depth values where then compared to our in-field identified floodplain
heights and fell within a reasonable range of the predicted values. Some variability did exist
between predicted and observed max depths but can be explained by the natural variability of the
stream and the difficulty of modeling multi-threaded stream sites alongside of single-threaded
stream sites. In general, the bankfull stage was typically found to be the top elevation of the first

bank confining the active channel belt.
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Dating Methods

Three methods used for determining sedimentation rates including the use of Cesium-137
(1¥’Cs) to determine the 1950’s radionuclide depositional surface (Magilligan, 1985; Walling and
He, 1993; Walling and He, 1998; Owens et al., 1999; Knox, 2006; Owen et al., 2011), buried
root crown dendrochronology (Phipps et al., 1995), and the identification of buried A-horizons

(Magilligan, 1985; Owens et al., 1999; Owen et al, 2011).

Cesium-137. '*’Cs is a radionuclide that quickly and strongly absorbs to fine-grained
sediments and is associated with two primary processes of adsorption (Walling and He, 1993).
The two methods capable of capturing adsorbed '3’Cs include the direct interaction of the
floodplain with atmospheric fallout or the remobilization and deposition of fine-grained
floodplain deposits previously containing '3’Cs (Walling and He, 1993). Floodplain sediment

cores can be analyzed, and the resulting levels of '*’Cs within the profile will vary with depth.

The depth-integrated relationship between '*’Cs can be directly related to the temporal
distribution of '3’Cs in the atmosphere (Walling and He, 1993). Therefore, by pinpointing the
maximum concentration of '*’Cs within the stratigraphic profile, one can isolate the surface
associated with the height of nuclear bomb testing which occurred in the early 1960’s
(Magilligan, 1985; Walling and He, 1993.) This surface serves as a stratigraphic boundary
separating deposition occurring after or before 1963 as well as serving as a point of reference
used to constrain rates of deposition occurring within a given interval (Walling and He, 1998).
The first occurrence of '*’Cs in the atmosphere occurred in 1954 at the start of nuclear testing. It
is suggested that Cs-137 can mix downward by approximately 10 cm within the floodplain

creating a small potential error in the date. Research done by Walling and He, 1998 use this as
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the principle method for determining sedimentation rates occurring within the floodplains of the

River Culm in the Ukraine.

Buried Root-crown Dendrochronology. Root crown dendrochronology is a technique
that combines data on the ages of trees, and the burial depths of tree roots to estimate rates of
sedimentation. By measuring the depth of sediment from the buried root crown to the present
ground surface, one may derive a sediment yield constrained by tree age and current depositional

surface age (Phipps et al., 1995; Sigafoos, 2014).

Tree core samples were collected when a set of three criteria were met at a site. First,
there had to be an appreciable thickness of fine-sediment deposited on the landforms of trees
being analyzed. Coring trees in areas of erosion yield little information on the change in rates of
sedimentation, but are rather more indicative of the long-term rate of erosion for that area
(Sigafoos, 2014). Second, the site had to contain a reliable species of trees in which tree age and
the depth to root crown could be determined (Sigafoos, 2014). The tree cores collected included
species of short leaf pine, sycamore, hackberry, and green ash. The most reliable tree data
collected came from the shortleaf pine as the wood was softer and less likely to break during the
coring process and due to the distinct visibility of the tree rings. Additionally, at each tree, a pit
was dug directly adjacent to the tree center to be certain of the depth to buried root crown where

the original lateral roots began to develop (Fig. 17).

Third, mature trees of a variety of different sizes were sampled to ensure that sample ages
were representative. If only large trees were sampled, this may effectively under or over-estimate
rates of sedimentation occurring if at any time during that tree’s life sedimentation rates spiked
or declined for a period of time. This occurs because the burial depth of the tree reflects the net

deposition of sediment during the entire life of the tree, any fluctuations occurring within that
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time will not be identified (Sigafoos, 2014). Rather, they will be represented as an average
sedimentation rate occurring over the entire life of the tree. For this reason, trees of varying
diameter were selected to ensure this bias could be avoided. All cores were extracted from trees
at standard breast height of approximately 1.5 m and information on the diameter and fine-
grained burial depth to root crown was recorded (Fig. 18). Burial depth was determined as the
distance from the present-day ground surface down to the furthest extent of the buried root

crown of the tree where the lateral tree roots first begin to emerge (Sigafoos, 2014).

In the historically logged headwaters of BBC, historically cut pine stumps were used to
establish pre-settlement soil boundaries. These historical pine stumps varied in burial depth from
6 cm to 22 cm in depth. And while the stump itself could not be cored to determine tree ring
counts and subsequent tree ages, we could reasonably assume that these large mature pines
germinated in pre-settlement soils with lateral root crown’s that still exist to mark that boundary
today. In total, four pine stumps were used to identify pre-settlement boundaries from two sites
in the headwaters of BBC, three at the Upper Big Barren Gauge, and one at the Upper Big

Barren Farm Site.

Buried A-horizons. Floodplain soil cores can also be studied to identify buried A-
horizons. A buried A-horizon is a stratigraphic marker indicative of the organic-rich pre-
settlement depositional surface. The dark, mollic A-horizon separates the post-settlement
boundary from the more mature, stable pre-settlement soils (Knox, 1972, 1977; Beach, 1994;
Owen et al., 2011). In the Upper Midwest, these darkened, A-horizons can be identified in the
field with the naked eye when found buried under more recent sediment (Magilligan, 1984;
Owen et al., 2011) (Fig. 19). Extensive historical records date the European settlement surface

in the Ozarks to occur in the early 1800’s (Jacobson and Pugh, 1992; Jacobson and Primm,
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1997). The location of a buried A-horizon acts as a benchmark for constraining rates of
sedimentation occurring after the onset of European settlement (Owen et al., 2011). Research
done by Knox (1987) utilized this method to identify the overlying legacy floodplains in the
Galena River in southwest WI and northwest IL. Knox (1972, 1977) was one of the first to show
the usefulness of the testable relationship between depth below the ground surface and the
temporal distribution of organic matter found in floodplain soils. He illustrated that identifying
peaks in organic matter content within the soil profile could establish the boundary between the
presettlement and post settlment soil surfaces of that region. In the Ozarks, buried A-horizons are
not as readily identified in the field but analysis of organic carbon peaks within the floodplain
samples can still accurately identify these surfaces where these boundaries are not visually

apparent (Owen et al., 2011).

Laboratory Analysis

All soil samples were dried immediately after sampling for 48 hours in an oven at 60
degrees Celsius, disaggregated with mortar and pestle. After samples were properly
disaggregated, they were then sieved to less than 2 mm to separate out the fine soil fraction for
137Cs gamma spectroscopy analysis, and to less than 250 microns for loss on ignition organic

carbon analysis.

137Cs Analysis. After sieving, approximately 100g of fine-grained soil from samples
KRB1-KRB40 and EB9 -EB29 (seven cores) were put into Marinelli beakers and analyzed for
20 hours using a GC4020 GE Co-Axial Detector and DSA 1000 Digital Spectrum Analyzer with

747 Series Lead Shield. This 20 hour analysis detects and quantifies gamma-ray emitting
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radionuclides. All samples run using this method were measured under an activity uncertainty of
<1 Bg/Kg. The standard operating procedure for the method can be found at
http://oewri.missouristate.edu/58411.htm. Note: Samples KRB89-KRB111 (four cores) were
prepped in OEWRI’s sediment analysis lab and were sent to Dartmouth University Laboratories
for Cs-137 processing following a period where the GC4020 GE Co-Axial Detector and DSA

1000 Digital Spectrum Analyzer was unavailable for use.

Organic Matter Analysis. After samples (KRB1 to KRB162; KRB187 to KRB215)
were sieved to less than 250 microns they were analyzed for peak organic matter content.
Organic content was determined using the Loss on Ignition (LOI) method following procedures
defined in the Soil Science Society of America Methods of Soil Analysis (Sparks, 1996) and the
OEWRI Standard operating procedure (OEWRI, 2007). Each sample was weighed to
approximately 5 g and placed in a pre-weighed crucible. Then using a 105-degree C convection
oven, all samples were heated for 2 hours to remove all residual moisture content and then
placed in a desiccator to cool. The samples were then measured for their pre-burn weights and
placed in a 600-degree C muftle furnace for eight hours to remove any organic matter present.
After the final burn, samples were placed in the desiccator and measured for their post-burn
weights. The percent organic matter loss was calculated by taking the difference between the
pre-burn sample weight and post-burn sample weight, divided by the pre-burn weight and times
100 as shown in the following equation:

% OM LOI = [(A-B)/ (A)] *100 (Eq. 4)
Where:

A= Pre-burn dry sample weight (g)
B= Post-burn dry sample weight (g)
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This procedure was completed on all 191 samples with an duplicate analyses at <10%
relative percent difference (OEWRI, 2007). Samples KRB163- KRB186 were not analyzed for
organic carbon content due to extremely shallow depth to refusal while coring and due to soil

loss during the initial coring process.

Dendrochronology Analysis. All tree cores were brought back to the lab, dried in an
oven to remove any residual moisture, and examined visually to corroborate tree ages calculated
in the field (Fig. 20). Ages were determined according to the number of counted rings starting
from the center of the core (determined visually) and counting out toward the bark of the tree.
This initial age was then granted five additional years to account for the initial vertical growth

period of the tree as shown in the following equation:

R+5years=A

(Eq. 5)
Where: a

R = number of tree rings counted (count)

A= approximate age of the tree (years)

Channel Change Analysis

A series of five 1: 15,748 scale USGS Government Land Office Township and Range
maps were obtained for regions of Carter and Ripley County, MO. These maps contained survey
information spanning from 1850-1861 from the General Land Survey Office of the United States
on location of streams and timber resources starting at the confluence of the Arkansas and
Mississippi rivers moving west across the United States. The five maps that were chosen for
analysis include township and range maps identifying the locations of streams and tributaries

west of the confluence of Big Barren Creek and the Current River. These maps were rectified
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using 2015 aerial imagery of Big Barren Creek obtained from the MSDIS. The newly rectified
maps were then used to create an 1850’s stream network showing the areas of Big Barren Creek
watershed with visible channels. All areas where the surveyors were unable to identify a channel

were recorded and digitized for comparison to the present-day channel.

To make comparisons to the current channel in Big Barren creek, 1 m resolution LIDAR
provided by the U.S. Forest Service was used in combination with 2 ft resolution, leaf off, 2015
MSDIS aerial imagery to classify segments of Big Barren Creek into distinct channel forms.
Any depressions in the LIDAR were filled using the “Fill” spatial analyst tool and then used to
create a flow direction raster. The flow direction raster was used to create a flow accumulation
raster that could be used to create a precise stream network. This stream network was used in
combination with aerial imagery and the LIDAR to classify areas of the stream as single-
threaded, 1.5 threaded (single channel with a chute channel), multi-threaded (multiple channels),
or channelized. Single-threaded streams were classified as areas of the stream with one distinct
well-defined channel, while areas of the stream with wide valleys and three or more channels
was considered multi-threaded (Fig. 21). Channelized areas while also technically single-
threaded, are also accompanied by artificial levees lining the banks that are readily observed on
the LIDAR (Fig. 22). Additionally, all channelized areas were previously mapped in the field
and were used to double check all areas of the stream that had been classified as channelized in

the LIDAR analysis.
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Figure 15. Examples of soil sample collection. Figure 17-a shows the
collection of soil via pit sampling at the Lower Big Barren 101718 site.
Figure 17-b is an example of soil core analysis in the field using soils cores
from the Giddings soil corer at the Nature Conservancy site 1.
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y

epth at which lateral
tree roots emerge

Figure 17. Example of pit dug at the UBB Farm site showing points where lateral
roots where used to mark depth to tree burial.
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Tile probe used
| to measure
| fine-grained
i depth to refusal

j| Burial depth to
root crown
measured = 0.21m

Figure 18. All cores were extracted from trees at standard breast height of
approximately 1.5 m and information on the diameter and fine-grained burial
depth to root crown was recorded. The above picture is an example of a tree cored
at the upstream of UBB Farm site.
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Figure 19. Buried A-horizon identified at the UBB Head-cut site. Dark mollic A-
horizon separates young sediment from mature pre-settlement soils.
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Rings are then
sanded and
recounted in the lab

Figure 20. Example showing trees rings counted in the field from the center ring
outward. Tree cores are brought back to the lab where they are treated and sanded
for re-counting.
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RESULTS AND DISCUSSION

Hydro-geomorphic Zones

Big Barren Creek can be described using four distinct hydro-geomorphic zones based on
in-field observations, aerial imagery, and a 1-meter resolution LiDAR analysis of the watershed
(Table 9, Fig. 23). These zones are characterized by stream hydrology, geomorphology, and
dominate drivers of channel disturbance. The locations of these channel zones are important to
understanding the non-uniform channel response of Big Barren Creek to historical and current
watershed disturbances. The upper portion of the watershed (R-km 38-40) is characterized by a
multi-threaded channel system that is a relatively undisturbed (EM channel class). This segment
is characterized as ephemeral with a relatively wide planform and forested channel beds
including tall short-leaf pine and hardwoods. The main processes occurring here include periodic
scour of the soil formed on the channel bed and periodic transport of sediment up to fine-gravel
size at relatively low rates. The soil formed on the channel bed has a dark A-horizon about 10 cm
thick, forming a bio- mantle composed of a silt loam to loamy matrix containing fine-gravel and
a dense root system. Fine-sediment deposits occur on the channel bed in places at < 0.5 m thick.

The next hydro-geomorphic zone (R-km 30-38) has an ephemeral, deeply incised, single-
channel morphology resulting from past and on-going stream channelization practiced by local
farmers to reduce flooding in riparian fields (ES channel class) (Table 9). Bradley (2017)
indicated channelization practices occurred sporadically from 1966 to 2018 on over 5.6 km or
(70 %) of this segment of BBC. Channelized segments are characterized by a channel bottom
that is typically 1 m deeper than the surrounding natural channel beds and accompanied by

levees approximately 1 m high on one or both sides of the channel. Additionally, headcuts
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originate at the upstream end of the channelized stream and have migrated upstream 200-400
meters since the initial channelization of the stream. Aggraded deposits typically occur within 1
km downstream of the channelized reaches. These deposits are composed mainly of sand < 0.5 m
thick, distributed over the channel bed (Theis, 2017).

Below the first channelized segment, the stream is again characterized as an EM channel
type (R-km 25.6-30). Below this segment is another ES segment of channelized channel in
middle BBC (Table 9). This downstream-most channelized area (R-km 21-25.6) is more recently
disturbed having underwent channelization sporadically from 2007- 2013 and encompasses over
41 % of the segment length. Channelization in these areas is disconnected, localized within < 1.5
km reaches along privately-owned sections of the stream, and separated by natural stream types
on public land. In response, head-cuts commonly migrate headward upstream of deeply
channelized zones into National Forest lands.

Starting at R-km 21 down to R-km 16.5, the channel exhibits permanent base flow
hydrology with a natural, single-threaded channel morphology (PS channel class) (Table 9). This
area of the stream is a Missouri designated Natural Area with narrow valleys and includes
protected mussel habitats (https://nature.mdc.mo.gov/discover-nature/places/big-barren-creek).
Below the Natural Area, from (R-km 6.5-16.5) the stream is characterized by intermittent
hydrology and alternating areas of natural stream and disturbance reaches (ISD channel class)
(Table 9). Disturbance reaches are large areas of the stream where aggressive lateral bank
erosion is accompanied by widespread bar formation across an over-widened channel
(Jacobson,1995; Martin and Pavlowsky, 2011). These disturbance zones show dramatic changes
in active channel width where gravel bar area increases dramatically with variable planform.

Non-disturbed channel widths range from 15-20 m while disturbed channels may reach up to 100
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m in active width where unstable channels continue to cut into banks and coarse gravel bars form
along opposite banks of the stream (Fig. 24). The widening and extension of channel bends in
disturbance zones probably indicates an inability of the channel to accommodate the increased
sediment transport caused by upstream disturbance. The last segment of BBC (R-km 1-6.5) is
characterized by permanent base flow hydrology, wide valleys, and a relatively undisturbed
channel morphology (PS channel class) (Table 9). However, bed material becomes more fine-

grained and muddier in this segment.

Fine-grained Sediment Storage

A total of 23 sites (10 tributary sites, 13 main stem sites) were assessed to estimate cross-
sectional fine-grained sediment depths (Table 10, Fig. 25) and storage volumes within valley
landforms (Table 11). For discussion purposes, storage analysis is separated by drainage area
into three groups with sites having drainage areas less 10 km? (upper BBC), 10-50 km? (middle
BBC), and 50-103 km? (lower BBC).

Fine-grained Depth. In Big Barren Creek, the distribution of fine-grained sediment was
calculated for each study site by multiplying the width of the landform by the average probe
depth of fine-grained sediment along cross-valley transects for channel, floodplain, and terrace
features (Fig. 26). In places with drainage areas less than 10 km?, fine-grained sediment depths in
the channel ranged from 0 m to 0.60 m with an average depth of 0.26 m (Table 10). Sediment
depths on floodplain features increased slightly to 0.18 m to 0.70 m with an average depth of
0.48 m. Terrace features contained the thickest fine-grained sediment deposits with highest
depths ranging from 0.34 m to 0.89 m, and an average depth of 0.58 m. In places with drainage

areas between 10-50 km?, fine-grained sediment depths in the channel ranged from 0 m to 0.43
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m with an average depth of 0.19 m. Resistant channel beds yielding probe depths of zero,
occurred in heavily scoured or incised areas of the channel at four sites ranging from 1.60 to 48
km? in drainage area. Floodplain features stored slightly more sediment with fine-grained
sediment depths ranging from 0.58 m to 0.98 m with an average depth of 0.75 m. Terrace
features contained the highest fine-grained sediment with depths ranging from 0.83 m to 1.44 m,
with an average depth of 1.09 m.

In the lower portion of the watershed with drainage areas between 50-103 km?, fine-
grained sediment depths in the channel ranged from 0 m to 0.54 m with an average depth of 0.23
m (Fig. 26). Floodplain features had fine-grained sediment depths ranging from 0.38 m to 0.83
m with an average depth of 0.63 m. Terrace features again stored the most fine-grained sediment
with depths ranging from 0 m to 1 m, with an average depth of 0.62 m (Table 10). Depth values
of zero in the terrace features of this section relate to areas of the stream within the Natural Area
where extremely narrow valleys are controlled by steep valley walls and coarse colluvial toe
slopes.

In general, floodplain and terrace depths increase downstream at approximately the same
rate (with terrace values being slightly higher). Our measured depths indicate almost no change
in floodplain depth in lower BBC compared to upper BBC along the main stem (Table 10).
However, fine-grained sediment depths within terrace landforms increase by 50% in
downstream. Conversely, channel depths decrease downstream by 65% in lower BBC compared
to upper BBC (Table 10).

Fine-grained Volume. The volume of fine-grained sediment in each of these landforms
was determined by multiplying average depths by landform width, then multiplied by a one-

meter distance downstream to determine storage volume in m*/m (i.e., cubic meters of sediment
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storage per meter valley length) (Table. 11; Fig. 27). For drainage areas less than 10 km? (upper
BBC), channel features stored the least amount of fine-grained sediment with cross-sectional
volumes ranging from 0 m>/m in places where gravel armored streams beds were affected by
frequent channel scour to over 29 m*/m in areas where large, wide channels stored sand and fines
in bench and bar features. Also, relatively large storages of fine-grained sediment occurred in
upstream channels (<2 km) draining forested upland areas (Fig. 27). The average fine-grained
cross-sectional storage in channel features is approximately 9.3 m*/m. The amount of storage in
floodplain features is considerably higher with storages ranging from 2.4 m*/m to 33.6 m*/m of
sediment. The average fine-grained sediment storage in floodplains is 10.9 m*/m and generally
increases downstream. Terrace features store the most fine-grained sediment reflecting changes
in valley width. Fine-grained sediment storage in terrace features ranges from 2.5 m*/m, where
valley widths are small and channel widths are relatively large, up to 179 m*/m of sediment
where very wide valleys are coupled with narrow single-threaded or channelized streams. The
average fine-grained storage in these features is approximately 39 m*/m.

In the middle portion of the watershed with drainage areas between 10-50 km?, fine-
grained sediment volumes in the channel ranged from 0 m*/m to 16.6 m*/m with an average
volume of 8.8 m*/m (Table. 11; Fig. 27). Channel storage values of zero in this portion of the
watershed occur in channelized areas of the stream with eroded channel bottoms and no
depositional bars or benches. Floodplains contained fine-grained sediment volumes ranging from
9.8 m*/m to 43.8 m*/m with an average volume of 26.4 m*/m. Terrace features again stored the
most fine-grained sediment with depths ranging from 13.3 m*/m to 152.5 m*/m, with an average

volume of 71.4 m3/m.
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In the lower portion of the watershed with drainage areas between 50-103 km?, fine-
grained sediment volumes in the channel ranged from 0 m to 25 m*/m with an average volume of
7.4 m3/m (Table. 11; Fig. 27). Channel storage values of zero in this portion of the watershed are
due to both localized channelization and incised single-channel streams with little deposition of
fine sediment. Floodplain features had fine-grained sediment volumes ranging from 5.7 m*/m to
50.6 m*/m with an average volume of 22.6 m*/m. Terrace features stored the most fine-grained
sediment with volumes ranging from 0 m*/m to 262 m*/m, with an average volume of 108 m*/m.
In total, fine-grained sediment stored in terrace features accounts for approximately 72% of the
total fine-grained storage in Big Barren Creek.

Average volumes of fine-grained sediment in valley-landforms generally increase
moving downstream, with floodplain and terrace volumes increase downstream at approximately
the same rate. Our measured volumes indicate a 2-fold increase in floodplain volume in the
downstream portions of the watershed compared to upper BBC. Fine-grained sediment volumes
within terrace landforms show a similar increase in downstream areas compared to upper BBC.
Conversely, measured channel volumes indicate a 26 % decrease in depth downstream compared
to upper BBC (Fig. 28).

We then analyzed the correlation among our measured geomorphic variables to assess
how strongly these variables were correlated and in what direction they were associated
(positively or negatively). Geomorphic variables including landform width, average probe depth,
and total volume of fine-grained sediment were assessed using power functions in relation to
increasing drainage area and valley width (Fig. 29-30). Average fine-grained probe depth was
assessed in relation to drainage area and returned a negative relationship with a modest r* value

for the channel of 0.44. This indicates decreasing in-channel deposition and sediment storage
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downstream due to multi to single threaded channel change. However, the relationship is weak
(80% or p=0.2). In addition, the floodplain and terrace series returned much weaker r* values of
0.12 and 0.19 respectively. Fine-grained sediment depth decreases in the channel due to bed
erosion and sorting under single-threaded channel conditions that become more common
downstream (Fig. 25). Overall, drainage area proves to be a poor predictor of channel depth but
correlates better with depth of floodplain and terrace deposits.

As a function of valley width, average probe depth returned slightly weaker correlations,
with the exception of channel depth which returned the same strength of correlation to both
valley width and drainage area. Like with drainage area, channel probe depths decreased
downstream with valley width (r?= 0.44). Floodplain and terrace depth gradually increase
downstream, but not simultaneously (r* values of 0.07 and 0.16 respectively). In contrast to
width, where valley width better explains trends, fine-grained sediment depth explains both
drainage area and valley width (Figs. 29-30).

Total storage volume of fine-grained sediment was weakly related to drainage area (1> =
0.38) (Fig. 29), but more strongly related to valley width (r* = 0.63) (Fig. 30). In BBC, valley
width is a much better indicator of the total volume of fine-grained sediment stored within
alluvial landforms, mostly due to terrace deposits being distributed across the valley floor to fill
accommodation space for alluvial deposition. This supports the findings of Donovan et al (2015)
and Magilligan (1985) who found that variations in the magnitude of sediment stored in valley-
landforms is subject to the control of valley width and to a lesser degree, subject to changes in
drainage area.

Sediment Storage Correlation Analysis. Using arithmetic correlation matrices, total site

storage (m>/m) was evaluated among sites in relation to six total variables including reach slope,
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drainage area, valley width, location downstream, active channel width, and distance upstream
from disturbance to understand downstream trends (Table 12). Total cross-sectional valley
storage showed the strongest correlations with changes in valley width (r =0.95, p=0.01). To a
lesser extent, total fine-grained storage volumes were correlated with reach slope (r = 0.59) and
drainage area (r = 0.57), both significant at the 0.01 level (Table 12). These trends suggest that as
reach slope increases, transport increases, and the amount of fine-grained sediment deposited
decreases. Places where the stream encounters a break in slope or an overall lowering of stream
gradient will see larger accumulations of fine-grained sediment in alluvial landforms. This
corroborates findings by Rieke-Zapp and Nearing (2005) who found increased sediment
deposition along stream reaches with more gradual slopes, and more erosion in steeply graded
areas. These trends also suggest that increasing drainage area generally results in increases in
more fine sediment stored downstream. This may indicate the greater influence of increased
water and fine sediment loads available downstream, as well as, wider valleys as drainage area
increases.

Site storage was also evaluated in relation to storage within individual landform features
including channels, floodplains, and terraces (Table 13). Fine-grained sediment storage in
channel features display poor correlations to all variables evaluated. The highest correlation was
with active channel width (r = 0.37) suggesting that as channel width increases so does the
amount of sediment stored in the channel. The lack of systematic relationships with geomorphic
variables suggests that channel deposition is controlled more by land us or other local factors.

Fine-grained sediment storage within floodplain landforms showed slightly stronger
correlations to individual site variables with reach slope as the main correlated variable (r = -

0.515; p=0.05). This indicates that as stream gradient decreases the average amount of sediment
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stored will increase in floodplain landforms within that reach. Floodplain storage in particular is
more closely related to changes in reach slope rather than valley width which more strongly
controls total cross-valley storages.

Fine-grained sediment storage in terrace features showed the second strongest
correlations to physical site variables such as drainage area and valley width behind total storage.
The amount of sediment stored in terrace features was predominately correlated with valley
width (r = 0.46; p = 0.05). This suggests that with increased valley width, the amount of fine-
grained sediment in terrace features will increase. Average depths (m) were also evaluated in
relation to site variables but returned very low values of correlation, with only total average
depth and channel width returning a significant value (r = 0.91, p = 0.01) (Table 13). This result
is interesting since channel depth and storage tends to decrease downstream. However, valley
width may affect depth increases locally within sampled sites to drive the relationship. More
sampling sites may have produced a different result.

Linear Regression Modeling to Predict Sediment Storage Volume. Step-wise and two
parameter linear regression techniques were used to model the strongest predictors of total fine-
grained sediment storage in valley landforms. The strongest indicator of total fine-grained
sediment storage in Big Barren Creek is a function of valley width with an approximate r* value
of 0.90, a slope coefficient of 0.973, and a standard error of 85 m*/m significant at the 0.01 level.
This suggests that as valley width increases, so does the amount of fine-grained sediment stored
in alluvial landforms. Additionally, this suggests that for every one-meter increase in valley
width, the volume of sediment stored will increase by about 1 m*/m. Other equations used to
model storage volume in channel and floodplain features were less effective and a two-parameter

model combining multiple geomorphic variables did not improve results.
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Stratigraphy and Dating of Historical Sediment Deposits

A total of 31 historical sedimentation rates were determined for historical sediments at 12
of the 23 total sites along Big Barren Creek using '*’Cs, buried root crown dendrochronology,
and identification of buried A-horizons in cutbanks (Tables 14-16). Nine sediment cores were
analyzed and dated for '*’Cs to determine the 1963 depositional boundary at each site (Fig. 31).
Eleven living trees were analyzed using buried root dendrochronology to determine recent
surfaces (Table 14), while four historically cut pine-stumps assumed to be remaining from early
logging activities before 1880-1920 by U.S. Forest Service scientists were used to indicate the
elevation of pre-settlement surfaces (Table 15). A total of eleven buried A-horizons were
identified through in-field observation and LOI techniques in the lab (Table 16). Buried A-
horizons identified in Big Barren Creek were often found in pre-historical channel bed and low
bench deposits within a densely rooted bio-mantle overtopping the pre-settlement channel bed.
Buried (Ab) horizons also occurred in either alluvial or colluvial deposits on low terraces,
floodplains and channel benches.

Analysis of '37Cs trends in three collected floodplain cores in upper BBC indicate rates of
post-1963 sedimentation ranging from 0.28 cm/yr to 0.45 cm/yr (Fig. 31). Four floodplain cores
in middle BBC returned sedimentation rates ranging from of 0.40 cm/yr to 0.66 cm/yr and
revealed higher contemporary rates of sedimentation in the upper reaches of middle BBC that
quickly attenuate downstream (Fig. 31). Two floodplain cores from lower BBC yielded post-
1963 sedimentation rates of 0.54 cm/yr and 0.40 cm/yr (Fig. 31). In general, upstream pit
locations had shallower accumulations of post-1963 legacy deposits at depths ranging from 10-
25 cm. Middle BBC had larger accumulations of contemporary legacy deposits at depths ranging

from 13-35 cm. Legacy depths in lower BBC ranged from 22.5- 30 cm. Post 1954 sediment
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depths are about 50 cm deep in upper, 40-50 cm in middle, and 60 cm deep in lower BBC sites.
According to these results, middle BBC has been subject to higher rates of contemporary
sedimentation than the upper reaches of the watershed. This may be due to recent channelization
disturbance occurring in middle BBC which increase transport capacity of the channel and
introduce more bank and bed sediment to the stream. Also, rates of sedimentation could be
higher here as a result of increased historical and recent pastoral and farming practices in middle
BBC compared to upper BBC. Due to a lack of '3’Cs analyses from multiple locations in the
lower portions of BBC, recent sedimentation rates from other methods are needed to put
upstream depositional rates into a larger, drainage basin-scale context.

In upper Big Barren, there were six locations in which the pre-settlement surface was
located. These boundaries helped to constrain rates of post-settlement sedimentation occurring
on low terrace and floodplain surfaces ranging from 0.24 cm/yr to 0.64 cm/yr. The depth to
buried soil boundary ranged from approximately 30 cm to 80 cm. In middle BBC, three pre-
settlement surfaces were identified and constrained rates of post-settlement sedimentation
ranging from 0.24 to 0.35 cm/yr. Depths to buried soil boundaries ranged from 30 cm to 45 cm.
Two pre-settlement boundaries were identified in lower BBC and helped to constrain rates of
post-settlement sedimentation prior to 1963 ranging from 0.20 cm/yr to 0.24 cm/yr. These results
indicate that rates of contemporary alluvial landform deposition in the upper and middle portions
of BBC decreased during the time following the 1960’s. This corroborates findings of earlier
literature that found peaks in legacy sedimentation associated with the height of original soil and
runoff disturbances such as agricultural land clearing periods in the U.S. (Knox, 1987; Lecce and

Pavlowsky, 2014; Owen et al., 2011).
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In upper BBC, a total of six trees ranging in age from 28 to 51 years were cored to
estimate contemporary sedimentation rates (Table 14). Tree analyses returned recent
sedimentation rates ranging from 0.0-0.41 cm/yr with an average rate of 0.24 cm/yr. Additionally
the stumps of historically cut pines during the early logging period were used to determine rates
of sedimentation to present ranging between 0.31-0.36 cm/yr occurring after the logging period
in upper BBC. A total of four trees in middle BBC aged 48-76 were cored and returned rates
ranging from 0.0-0.21 cm/yr with an average rate of 0.14 cm/yr. In lower BBC, a total of four
tree ages 30-45 and returned rates ranging from 0.26 cm/yr to 1.36 cm/yr with an average rate of
0.96 cm/yr. These trends are consistent with the results obtained from the *’Cs analysis (Table
31).

Legacy Sediment Contribution to Fine-grained Alluvial Storage. At sites where
stratigraphic boundaries within legacy deposits were determined, the average storage of legacy
sediment within landform features was calculated (Table 17). In general, most of the legacy
sediment identified in the upper portions of the watershed was stored on paleo-channel features
which presently (in 2018) form channel bench or floodplain features. These features are areas of
the stream that once exhibited a wide, multi-threaded channel geometry, were infilled with
legacy sediment, and then incised down past the depth of the paleo-channel bed, and now
function as bench or floodplain surfaces for the current stream. Average legacy storage within
these floodplain paleo-channel features ranges from 0.8 m*/m -12.8 m*/m in the headwaters of
BBC. In middle BBC, channels, floodplains, terraces, and floodplain paleo-channels store legacy
sediment ranging from 3 m*/m to 50.4 m*/m with terraces storing most of the legacy sediment. In
lower BBC, most of the legacy sediment is stored in floodplain and terrace features with 15.2

m?>/m stored in floodplains and over 89.3 m®/m stored in terrace features (Table. 17). Overall,
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legacy storage seems to be spatially discontinuous with most sediment being stored on paleo-
channel banks and benches in the headwaters, terrace features in the lower, and mixed among
landforms in middle BBC.

Legacy sediment was calculated as a percent of total fine-grained landform storage at 12
different sites within BBC (Table 17). Legacy storage was calculated for the floodplain,
floodplain paleo-channel, and terrace by taking the average total fine-grained sediment volume
within a landform, divided by the average volume of legacy sediment within that landform to
determine the percent legacy storage by landform for each site. In upper BBC, legacy storage
volumes within floodplain paleo-channels accounted for between 5 and 16 % of the total fine-
grained floodplain storage, while legacy sediment storage in terrace features accounted for nearly
38 % of the total fine-grained terrace storage. In middle BBC, between 9 to 15.5 % of all
floodplain paleo-channel storage is accounted for by legacy sediment, while legacy sediment
stored in terrace features accounts for nearly 26 % of total fine-grained terrace storage. To a
lesser extent, only 8 % of the total fine-grained channel storage is made up by legacy deposits in
middle BBC. However, places with larger in-channel bench deposits returned higher percent
legacy channel storages of approximately 11 %. In lower BBC, legacy sediment within
historically stable floodplain features was determined to make up around 5 % of the total fine-
grained storage. Conversely, legacy storage within terrace features accounted for a substantial 30
% of total fine-grained terrace storage within sites in lower BBC (Table 17). Overall, legacy
deposits in BBC tend to contribute to about 2 10% of total fine-grained sediment storage in
paleo-channel and flood plains and approximately 30% in terraces (table 17).

Stratigraphic Analysis at Selected Sites. The buried-A horizons marking the pre-

settlement boundary were difficult to find and identify in the field. Barnes Hollow head-cut site
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at R-km 35.8, is one example of a visible buried-A that was identified in the field (Fig. 32). This
boundary occurred within a high floodplain feature cut off from the stream due to aggressive
head-cutting and stream incision. The exposed cut bank contained approximately 20 cm of
yellowish-brown sandy loam with 40% gravel at the top of its profile. Underlying this, a small
layer of yellow-brown sandy loam with minor gravel overlies a distinctly darker Ab horizon
buried at a depth of 50 cm. The Ab is characterized by a dark brown silt loam deposit
overtopping a light brown, sandy loam mixed with 30% gravel. At a depth of 90 cm the old
channel bed is visible and is characterized by a sandy deposit with 60% coarse gravel. Assuming
the top of the A-horizon indicates the pre-settlement contact, sediment has been accumulating on
this floodplain at an average rate of 0.39 cm/ year since the onset of European settlement (Fig.
33). A-horizons typically have LOI%’s from 0.8 to 6.2, while subsoil samples tend to have lower
LOI % values from 0.3 to 1.8, depending on the location.

Upper Segment. At the upper BBC site at river kilometer 37.9, a combination of older
cut pines and living trees were used to piece together a sedimentation history for the headwater
region of BBC (Fig. 34). A pine-stump from the historical logging period (1880-1905) was
determined to be buried at a depth of 0.22 m within the floodplain adjacent to the current
channel. Using a tile probe we were able to identify the depth of the old channel bed at a depth of
0.45 m. Just upstream of our site along the same floodplain landform, a mature pine was cored
and determined to be 29 years of age. The lateral roots of the tree were determined to be at the
current ground surface. This indicates that during/ following the historical logging period there
was approximately 0.22 m of fine-grained sediment accretion occurring on top of the paleo
channel bed. More recently, since 1990 there has been effectively no accumulation of fine-

grained historical infill overtop of the legacy sediment acquired after the logging period.
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However, following infill of a portion of the paleo-channel bed, the current channel has
continued to incise down below the depth of the old channel bed causing historical paleo-channel
sediment to appear as sediment accumulated on higher floodplain features.

Middle Segment. Several stratigraphic boundaries were identified at Nature
Conservancy site two where the truck mounted soil corer was able to extract seven cores along
the floodplain and terrace units (Fig. 35). Core 5 was extracted from the Midco very gravelly
loam alluvial soil series, and cores six through eleven were extracted from the Secesh silt loam
series. Peaks in organic matter, ranging from 1.0 to 6.17 % were detected in most all the cores
excluding core seven where a buried A-horizon was not visible. As a result, average post-
settlement sedimentation rates for both the floodplain and terrace features were determined at
0.26 cm/yr and 0.30 cm/yr, respectively. Buried-A horizons in floodplain cores at this site were
characterized by dark brown, organic-rich layers overlying a thick B horizon characterized by a
blocky silt loam (B-horizons do not form in < 100-year-old sediment). A Bt horizon was
indicated in core seven along the terrace/floodplain boundary at approximately 90 cm deep. This
is an indicator that this surface is more representative of older Holocene sediments and less
indicative of recent legacy sedimentation. Floodplain core five was tested for '*’Cs with the peak
located at 7.5 cm below the surface, returning a rate of post 1963 sedimentation of 0.14 cm/ year.
The buried-A identified in the same core was buried at a depth of 0.6 m. This area is known to be
subject to recent channelization disturbance. The over-deepening of the stream and lack of
connectivity between the channel and floodplain at this site may explain the decreased rate of
sedimentation in recent years due to the fact that sediment is less likely to overtop channel banks

and more likely to be transported downstream during the more frequent 1-2 year flow events.
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Lower Segment. At the Lower Big Barren site a farm field surrounds a forested riparian
belt. In this area there was an ample supply of mature trees growing on the floodplain suitable for
dendrochronology analysis (Fig. 36). One soil pit was also dug here to provide information on
the depth of the 1963 depositional boundary at the site. In general, the site was characterized by a
large depth of fine-grained sediment within the floodplain features containing an average fine-
grained sediment depth of 0.71 m. Additionally, trees ranging from 30-45 years of age were
buried at depths of up to 0.43 m. This indicates a high level of recent sedimentation occurring in
this area since at least 1973. The 1963 depositional boundary identified at this site returned a
depth of approximately 0.23 m. This suggests a difference of 0.2 m in boundary depth which is
within reasonable error. However, this disagreement in stratigraphy poses a potential problem
and suggests that uneven topography of the floodplain and chute areas may preclude assumptions
of horizontal stratigraphic relationships. It is known that during times of higher flood stages
water spreads across the floodplain and into the adjacent roadcut which acts as a secondary
channel during high water. It appears that the edges of the floodplain nearest to the road have a
lower density of trees and riparian vegetation and may be subject to faster rates of erosion during
these larger flow events when the road is activated as a second channel. The roots of vegetation
and trees work to anchor and reinforce the soil matrix making it less prone to bank failure
(Krzeminska et al., 2019). Places along the floodplain along the road with less vegetation may
have eroded at an accelerated rate in comparison to the rest of the floodplain causing
stratigraphic boundaries to vary in depth across the floodplain.

Watershed Disturbance Effects on Historical Sedimentation. Sedimentation rates for
all landform features were combined to determine sedimentation histories occurring during

different periods of time for the upper, middle, and lower portions of BBC highlighting the
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spatial distribution of legacy deposits, at what rate they were deposited and why (which period of
disturbance did they follow) (Table 18; Fig. 37). In the upper portions of the watershed,
sedimentation rates were much higher during the post-settlement (>1890) period with an average
rate of 0.46 cm/yr. Recent rates of sedimentation occurring post-land management (>1963) are
much lower in this zone with average rates of approximately 0.29 cm/ year (Table 18; Fig. 37).
This suggests that this portion of the watershed was more strongly influenced by the effects of
historical logging disturbance (construction of trams, logging roads, and soil cover disturbance)
occurring before 1963 and has been stabilizing ever since. This trend is consistent with
watersheds subject to early disturbance associated with agricultural activities in the upper
Mississippi valley accompanied by high rates of sedimentation that tend to decrease following
periods of better land management (Knox, 1987).

While direct logging activities had some effect, it was most likely subtle compared to the
indirect effects of forest cover change from coniferous to hardwood forest. The selective removal
of conifer species from watersheds decreases rainfall interception and increases stream discharge
(Dunne and Leopold, 1978). Conifers possess greater amounts of foliage and branches more
consistently throughout the year. Furthermore, the needles of conifer species provide more
precipitation interception potential and storage than broad leaf hardwoods (Dunne and Leopold,
1978). Median values of canopy interception as a percentage of annual gross precipitation
indicate that coniferous forests intercept approximately 15% more gross annual precipitation
than deciduous forests (Dunne and Leopold, 1978). Additionally, research by Shuhan Du (2013)
compared interception rates of two different forest cover types (coniferous and mixed broadleaf/
coniferous) in the Sichuan Province of China near the Yangtze River, and found that coniferous

forests in Tibet intercepted 30% more rainfall than their oak-dominated mixed forest counterpart.
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Hardwood deciduous forest stands tend to lose their leaves in the winter leading to a decrease in
rainfall interception and an overall increase in runoff and stream discharge during the leaf off
season. This trend is further worsened in Big Barren Creek watershed as most flood events occur
in the late fall and early spring months (Pavlowsky et al., 2016). Consequently, the increased
runoff resulting from a decrease in precipitation interception in the headwaters of BBC may have
contributed to the increase in hillslope soil and channel erosion occurring in this area during the
post-settlement period sometime after the 1890s. The extensive depletion of short leaf pine in
this area during the logging exploitation period has allowed for the dominant regrowth of oak
and other deciduous hardwoods. This change in vegetation may have caused longer-term
changes in precipitation, interception, and runoff contribution to stream discharge allowing for
increases in rates of upland soil and tributary erosion and deposition. Furthermore, continuing to
the present day, it is estimated that mixed pine-oak woodland cover is only 15% of the
prehistorical stand ranges once existing in the Ozarks (Cunningham and Hauser, 1989; Guyette
et al., 2007).

However, since 2000 the U.S. Forest Service has implemented prescribed fire
management as a part of the Missouri Pine Oak Woodland Restoration Project. This management
technique involves the selective burning of certain watershed units to restore openings in tree
canopies allowing for conifer species to compete and thrive in more open woodland
environments. This slow conversion of the watershed back to pine stand dominated areas may be
reversing the initial effects of logging disturbance and re-introducing higher precipitation
interception potential. This process will diminish the effects of rain drop impact on the forest
floor reducing soil erosion and potentially reduce rainfall runoff contributions to the stream

leading to a reduction in legacy sediment deposition occurring in more recent years (>2000).
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However, in contrast to better forest management practices in recent years, studies show that
more frequent intense precipitation events (>3 in) within the last 30 years have been occurring in
the Ozarks compared to historical records from 30 years prior (Pavlowsky et al., 2016).
Additionally, a study by Wuebbles and Hayhoe (2004) analyzing precipitation totals in the
Midwest, has projected a 30% increase in winter precipitation by the year 2090. In the same
study, it was also determined that the frequency of heavy precipitation events in the Midwest has
increased over the past century and is projected to nearly double by the end of the next century.
This increase in frequent intense storm events may contribute to higher runoff and erosion rates
occurring in BBC.

In middle BBC (R-km 16-36) sedimentation rates during post-settlement (1890-1950)
and post-land management (>1950) periods moderate at 0.28 cm/yr and 0.26 cm/yr, respectively.
The lower rate of post-land management sedimentation suggests that recent channelization that is
cutting the channel off from its adjacent floodplains, may be limiting the amount of recent
deposition in this area. Theis (2017) indicated that in some channelized locations with
constructed levees along Big Barren Creek the channel can contain up to the 100-year flood
stage. This prevents a majority of smaller, more frequent flows from overtopping channel banks
and depositing suspended sediment on floodplains by increasing transport capacity and flushing
sediment downstream. This effect, though quickly attenuating downstream of channelized zones,
drastically influences the spatial distribution and quantity of sediment deposited in landform
features in channelized areas following the post-channelization period (> 1960). Historical post-
settlement sedimentation rates in the channelization zone average at approximately 0.30 cm/
year. It is likely that sediment is transported through areas of channelized stream where transport

capacities are great and carried further downstream.
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In the lower portions of the watershed (R-km 36-40), we see an opposite trend in
sedimentation rates compared to the headwaters of BBC. The post-settlement sedimentation rates
occurring post 1890 in this area were among the lowest in the watershed at an average of 0.22
cm/year. The decrease in sedimentation rates suggest
that the effects of timber harvest were not as prevalent in this area of the watershed during the
initial logging period and effects likely attenuated very quickly moving downstream out of the
upland areas into tributaries. Following logging practices, downstream soil and vegetation were
left largely intact in many places, while upstream runoff and sediment loading increased slightly.
This sediment was trapped in the tributaries because the hydraulically rough, multi-threaded,
channels worked to resist channel flow velocity and resulted in the deposition of sediment close
to the source. The highest rates of legacy sedimentation occurred in the lower portion of the
watershed (R-km 0-16) downstream of several large disturbance zones following the land
management period (post 1950) with sedimentation rates ranging from 0.40 cm/year to 1.36
cm/year with an average recent rate of 0.80 cm/year. These rates remain historically the highest
rates of sedimentation in BBC despite the widespread introduction of land conservation practices
that were implemented in this time starting in the 1950’s (Knox, 1977, 1987, 2002, 2006;
Magilligan, 1985).

The drastic increase in sedimentation rates following the 1950’s period leads us to
believe that direct modification of the stream through channelization increased sediment input in
the channel and increased transport capacity. This allowed for increased rates of recent
sedimentation into channels and on the floodplains of lower BBC. Furthermore, increases in the
amount of intense rain events occurring in the Ozarks as a result of climate change have

increased the frequency of flood events capable of eroding and transporting sediment in streams
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(Wuebbles and Hayhoe, 2004; Pavlowsky et al., 2016). The increase in flood events may account
for increased rates of sedimentation in recent years. Additionally, erosion occurring in large
disturbance zones may be releasing sand downstream as a result of channelization upstream

occurring after the 1950s.

Channel Response

Legacy sediment deposition patterns in BBC are also indicative of larger-scale changes in
channel morphology. Channels in BBC prior to European settlement would have consisted of
predominantly multi-threaded channel systems hydraulically controlled by the location of trees
and dense vegetation. Channels during this time would have had no legacy deposition on
floodplains and channel features. More runoff caused by the transition to hardwood forests
would have increased flood peaks causing higher stream power and channel enlargement.
However, channels in BBC during this time were robust and resistant due to high density of trees
in the channel, coarse substrate and bedrock in places, and bio-mantled beds with significant
armoring from roots and riparian vegetation. This would have limited and buffered the rates of
channel response causing a geomorphic lag. Geomorphic lags are introduced into watershed
networks when a gradual or persistent geomorphic change occurs due to disturbance outside
normal boundary conditions, in this case a change in channel hydrology related to increased
runoff following pine logging (Chappell, 1983). In other words, channels are responding slowly
to past disturbance and may still be responding to historical disturbances today. These responses
may be further exacerbated by more intense storms due to recent climate change (Pavlowsky et

al., 2016).
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Following historical disturbances, multi-threaded channels in BBC have filled with fine-
grained sediment in some places. Sediment fills are limited to bank margins and channel beds
and benches and have facilitated the narrowing of active channel flows, thus concentrating water
into incised main threads creating a 1.5-thread (single channel with a chute) or single-threaded
channel geometry in places (Fig. 38). The process is contrary to the classic model of overbank
legacy deposition experienced by most single-threaded streams since deposition occurs in and
over the channel and not on adjacent overbank floodplains. However, Walter and Merritts (2008)
and Jacobson and Coleman (1986) during their studies on north American rivers, found similar
legacy sedimentation patterns characterized by post-settlement alluvium that has infilled and
covered most pre-settlement wetland channels and their poorly drained floodplains. It may be
suggested that forested watersheds, are more likely to exhibit this multi-channel infill of legacy
deposition as a result of smaller more frequent flooding events as opposed to the vertical
accretion of legacy deposits occurring on larger main stems resulting from large flooding events
exceeding bankfull discharge. Qualitative evaluation of present main channel suggests that only
about 3 km of the stream exhibits a multi-threaded morphology in BBC accounting for
approximately 8 % of the present channel length. However, GLO-VIS maps from 1850-1860
suggest about 23 km of multi-threaded channel planform accounting for approximately 58 % of
the historical channel length. This evaluation suggests a reduction in multi-threaded main
channel of about 88% since 1850. This supports research done on the Platte River in Wisconsin
and other Wisconsin and midwestern channels that have tended toward more narrow, deep,
single-threaded main channel in the lower reaches of the watershed in response to human
disturbance compared to their pre-settlement counterparts (Knox, 1977). This tendency toward a

more single-threaded channel geometry has facilitated in the decrease of in channel sediment
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accumulation in the downstream reaches of BBC due to the increase in transport capacity and
bed scour occurring in these single-threaded stream reaches. This transition also facilitates in the
movement of fine-grained sediment downstream through these single-threaded areas and toward
the confluence with the Current River.

Overall, comparisons of legacy deposition rates indicate that legacy deposition in Big
Barren Creek is on par with disturbance related legacy deposition experienced in other main stem
streams and rivers throughout Missouri and the Midwest (Table 1). Owen et al., 2011 found
average rates of sedimentation along the James River in southwest Missouri between 1800 and
1950 of 0.55 cm/yr and 0.32 cm/yr occurring after the 1930’s. In addition, Pavlowsky et al., 2017
found rates of sedimentation along the Big River in southeastern Missouri of (1.3- 3.0) cm/yr
occurring between 1800 and 1950 and (1.3- 3.0) cm/yr in the land management phase occurring
after the 1930’s. Both papers reveal increased sedimentation resulting from historical agricultural
disturbances in the area. This is a strong indication that the amount of legacy deposition observed
within Big Barren Creek may bare some significance as to the level of forest disturbance
experienced in this area. In addition, similarities in BBC’s legacy deposition rates compared to
studies done in larger, less forested, valley systems are further made significant due to the
normally low natural rates of overbank sedimentation assumed to occur in mature forested
watersheds. This indicates that in order for a small, heavily forested watershed to experience
rates more common to open valley main stem systems, there needs to be large-scale forest stand
or direct channel disturbance. In BBC, disturbances may have been further exacerbated by the
effects of climate change and its effect on increasing recent flood frequency (Pavlowsky et

al.,2016). These changes in watershed factors may be effectively working in combination to
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influence the channel morphology in forested watersheds and increase the amount of sediment

deposited in the alluvial landforms in BBC.
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Drainage Area and Fine-grained Sediment Depth
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Figure 26. Fine-grained sediment depths by landform and drainage area. Locations
labeled with a T indicate tributary sites while all others are mainstem sites. Values of
zero indicated places were fine-grained sediment depth was 0 m deep. Values labeled
N/A indicated places where measurement was unable to be obtained for a landform.
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Fine-grained Sediment Storage in Channel Landforms
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Figure 27. Fine-grained sediment volume by landform and drainage area. Locations
labeled with a T indicate tributary sites while all others are mainstem sites. Vertical
scale for terrace landforms is approximately six times greater than the scale for
floodplain and channel landforms.
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Figure 32. Buried A-horizon at the Barnes head-cut site at R-km 23.3. Fine
grained depth to refusal at this site at 90 cm on old channel bed.

108



IAm0 6¢°(0 ATorewrxoxdde St 2197 SULLINOJ0 9)BI UOIIBRIUIWIPS JUIWI[NIS-1s0d oy I,
“Sueq o ure[dpoo[y Ul pAIUIPI SeM UOZLIOY-Y PALng ‘g G¢ W-y 1B IS INO-PeIH SoUIR I8 UOIIS SSOI)) €€ AIN31

(wr) ooueIsI(]

0¢lI 001 08 09

oy

0¢ 0

Paq [ouuRyd PIO e :

[ ddeLId],

Ieak /ud 6¢°(0 0S8 <

:9Jel UOIJBIUDWIPS
00BJINS JUOWIO[NISAIJ . .

93e10)S paureIZ-duL] -

[ouueyd urew DG

1 ddeLId],

INIPRIY Sduieyg

06¢¢

S6¢ec

0°0v¢

Sore

0'1v¢

SIve

0¢re

Seve

0°€vc

(w) uoneAd[q

109



‘Jouueyd-031ed P[o Jy) JO [[IJUI JO UONIJ[JAI € SI ‘Aep0) 93s am ure[dpoory ay [, 1 Surddo) 1oA0 [ouuRyd A} JO [[IFUI [BOLIOISIY
UM UMOUS ST Paq [ouueyd pio 2y Jo uonisod orqdeidnens oYy, ‘7 8¢ w-y e s a3e3 Dy Joddn 18 uonoas ssox) ‘¢ aIn3ig

(wr) oouwysI(q

001 08 09 oy 0cC 0
T T T T T €¢¢e
B)ep 091],
dunmg ourd =
o3nen ggn 1 S°€S¢C
(9orJINS JUOWI[AS-21d)
UOZLIOY-Y MO[3q bez

||||||||| -Paq [auteyd pIo

- A/ (ouaq [ouueyd p[o JO 1 $¥SC

dojuo Sp61-0681 :dwmnys aurg

(w) uoneAd[q

0d
dd 1 ¢S¢

1 9JeB.LId ], G'GST
PO JA/WD () :91BI UOIIBJUIWIPS 9¢¢

s1eak 67 :oulg ¢ BLI],

Isnes) gdn

¢9s¢

110



‘sjun 9oe11d) pue ure[dpoorj oY) 3uo[e SAI0D UIAIS JOBINXD
0} 9[qB SeM JJI0D [I0S PAJUNOW JONI) Y "€ €7 UD[-Y 18 0M) IS AJUBAIOSUO)) dINJBN WOIJ UONIIS SSOI) “G¢ T

(wr) 2oueysI(q

V144 061 4! 06

0

%4

I deLd ],

T3 /wd GE'() (0681<
Tedk /ud 4170 :€961<
210)) [10S :S9JeI UOT)BIUdWIPIS

Arepunoq €961 G 310D
00BJING JUSWID[)IOS-01] =

7 NS AJUBAIISUO)) dIN)BN

081

181

(4]

€81

¥81

¢8I

981

(w) uoneAdq

111



06 08

0L

(wr) 2ouessIqQ

09 0¢ 0¥

0¢

0¢

01 0

aInjseq
we,j

o3e101§ paurer3-aury --
Q0BLINS JUSWII[}IOS-d1]
90BHING LET-SD

BJR( 1L

18K /wd €/°( 1€961<
:S9JBI UOIIBIUIWIPAS 9FBIAY

wrIeg 31g 1Mo

SI¢CI

(44!

gl

€Cl

Gecl

vCl

Svel

SCl

AW €770 ST €961 19138 SULLINOO0 J)BT UOHBIUSWIPIS AFLIIAR Y[, 'SD 10 pdzA[eue sem jid [10s
Quo pue SIsATeuR A30[0UOIYIOIPUIP JOJ PAIOD AIIM S (AN NI " WY 18 S D JoMOT A} JO UOIIIS-SSOI)) "9¢ AIN3I]

(wr) uoneAdq

112



"SWIOJpue] [BIAN[[E [[ 10] }o91) udreq S1g Suo[e s9jel UOIBJUSWIPIS [BOLIOISIY dFRIOAY /¢ AIn31]

Odd 1omo] Ddd 9IPPIN odd 1eddn
‘ 0

10

zo
z
€0 %
w2
g
2
P00 2
- c0 B
810C-0681 = 810C-0561 = 0561-0681 = 90 ,W

L0

9=1u

80

113



"SWIBAI)S PAPLAIYI-O[SUIS WA)S UTBW }SOUW U0 PAoudLIddxa syrsodop A9e39] JO U01JaI09E [BIIIIOA JUB(Q-IJAO JO
[opow JISSE[d Y} 03 AIe1U0d SI uonIsodop Aoe39] JO [apowt SIY [, "A[9A1d2dsa s31S0dap oudq pue SIIAJ] ‘saoel1d) ‘sure[dpooyy
juasaxdareg “T ‘11 ‘dd SUOLIBIAQIQQE Y], SISAI0 JIeZ() Ul UoNN[OAD [duueyd 3y} Surmoys werderp [en3doouo)) "g¢ I3

SOQAQ] INOYIIM SUBQ 0)
PaIIWI[ SI UOH)BIUDWIPAS )[ING I8 SIIAJ]
[BIOIIAIE ‘PaZI[auuRYo ST [SUURYD P[0

woyuerd

PapeaIy}-9[3UlS 2IOW B 0} UONISURT)

€ [)IM ‘SUISIeW Jueq pue S[[IJ [QUUBYD
0} PIWI] ST UONBIUAWIPIS K0T

popeanyp-nnuw ‘uvonisodop
K2©39] OU ‘BId 90UBQIMISIP-I]

[PPOJAl 38310, SYIBZ(Q

pazijouuey))

Ju2TIIpas UonBZI[auuetd }s0g

JELLEDE]
yuawapas-)sod pio

F

. T

e

V/. L T L e 1)

\lk_” [PUUET[D INO0D§

Dgg ur ares s
uonisodap yueqIoA0 d1sse[d Jo adA} SIy T,

UONBIUIWIPIS JUBQIIAO A0839T JISSB])

o/

dd dd

_oooooo.ooooooﬁ ._.OOoooooooooo._.

L N N I I R L N R

114



CONCLUSIONS

The purpose of this study was to investigate the possibility of post-settlement or legacy
sedimentation occurring as fine-grained deposits on alluvial landforms on the main stem and
headwater tributaries of Big Barren Creek in the Ozark Highlands, and to evaluate the legacy
sedimentation rates associated with historical logging and recent channelization practices.
Specifically, form and distribution of fine-grained sediment deposits along Big Barren Creek
were assessed by field and geospatial measurements of depth and width of valley landforms at
tributaries and mainstem sites. Additionally, stratigraphic indicators including buried A-horizons,
buried root crowns, and Cs-137 profiles were used to determine the age of sediment deposits.
Lastly, human effects on headwater stream sedimentation and related channel responses and was
described by presenting a model of century-scale channel evolution in Big Barren Creek in
response to human disturbance from a multi-threaded to single channel form. There are seven

findings of this study:

1. The majority of fine-grained sediment stored in Big Barren Creek remains in terrace features
with lesser amounts of sediment stored in the floodplains and channels and generally increases
with increasing valley width. Terrace storage accounts for approximately 72 % of the total fine-
grained storage in BBC. Linear regression modeling has indicated that fine-grained sediment
storage can be accurately predicted as a function of valley width. This supports previous research
done by Magilligan in 1985 that suggests sediment volume and depth are a function of valley
width;

2. Legacy sediment in terrace features accounts for 38 % of total fine-grained storage in upper,
and 30% in lower BBC. Legacy sediment in floodplain paleo-channels accounts for between 5-
16 % of total fine-grained storage in upper, and 5 % in lower BBC. Legacy sediment in channel
features was only identified in middle BBC and accounts for between 8-11 % of the total fine-
grained channel storage in middle BBC. Places were percent channel legacy storages were higher
are indicative of areas with single-threaded channel types with large fine-grained benches.

3. Fine-grained legacy deposits (post-1890) occur in Big Barren creek and are distributed non-
uniformly within channel, floodplains, and terrace landforms. Evidence for legacy deposits
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include the identification of multiple stratigraphic horizons in floodplain and terrace soils
indicative of the post-settlement period;

4. Rates of post-settlement deposition occurring from 1890-1963, are highest in upper BBC
(~0.45 cm/yr) where the effects of historical timber harvest were most prevalent and quickly
attenuate downstream to (~0.29 cm/yr) in middle BBC. Rates of sedimentation between
1890-1950 in this area of the watershed are two times higher on average than those occurring
during the same time period in lower BBC. The selective removal of most all of the coniferous
tree species in the upper portions of the watershed during the logging period probably contributed
to increases in runoff and wide spread erosion of upland soils and local channel bed scour of
streams in headwater reaches;

5. Rates of post-1963 sedimentation are highest in lower BBC (~0.73 cm/yr) due to sediment
supply from upstream head-cutting, channelization, and lateral bank erosion in disturbance zones.
Large volumes of fine-grained sediment, sand, and gravel are released from head-cuts, bank
winnowing of channelized stream reaches, and floodplain turnover from laterally eroding
channels in disturbance zones. The increased rates of post-1950 sedimentation in the lower
portions of the watershed suggest that a combination of increased sediment supply and increase in
stream power generated during stream channelization processes may have led to more frequent
overbank flows downstream where fine-grained sediment was deposited. Rates of post 1963
sedimentation in this area of the watershed are 1.5 times higher on average than post-1963 rates
of sedimentation in upper BBC;

6. Prior to European Settlement, Big Barren Creek exhibited a multi-threaded channel geometry
in the upper and middle segments. In response to human-induced watershed disturbance, BBC
has since undergone decadal to century-scale channel evolution tending towards a single channel
geometry. Channels in BBC prior to European settlement would have consisted of heavily
forested valley floors with multi-threaded channel systems hydraulically controlled by the
location of trees and vegetation. Following historical timber disturbance, multi-threaded channels
filled with fine-grained sediment and gravitated toward a 1.5 thread (single channel with a chute
channel) or a single-threaded channel geometry. These effects have since been exacerbated by
recent channelization practices which artificially straighten and deepen stream channels. These
land use changes in combination with climate change induced increases in flood frequency may
be working together to influence channel morphology and increase sediment deposition in Big
Barren Creek; and

7. Long term effects of land disturbance in Big Barren Creek include fine-sediment deposited at
accelerated rates into coarse gravel channels and fine-grained floodplains, damage to riparian
corridors in channelized stream segments and disturbance zones, and a significant long-term
source of post-settlement alluvium stored in channels and floodplains. This sediment is then
made available for rapid remobilization during flood events through channel scour and lateral
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bank incision. The destruction of riparian zones along channels lead to more frequent stream
bank failures and lower the filtering capacity provided by vegetative barriers lining the channel
banks. Additionally, increases in fine-grained sediment stored and readily remobilized in BBC
introduce water quality and ecological concerns for the Current River Drainage basin as species
that rely heavily on coarse gravel-bedded streams with suitable void space to provide habitats
may suffer the effects of fine-sediment infill. These changes to the channel imply that
contemporary river processes in BBC may be different from hydrologic and geomorphic
processes occurring in the pre-settlement period and are largely due to the influence of human
induced land disturbance.

More work is needed to better understand the sources of sediment under transport in the
contemporary channel. Geochemical source analysis should be done to determine the sources of
both past legacy sediment and present-day sediment loads. If the source of the sediment can be
determined, than better management techniques can be developed to manage specific land areas
to reduce the amount of human-derived sediment entering the watershed in response to land use
disturbances. By better understanding human influences on sediment production and channel
change in forested watershed systems, we can work to minimize the negative effects of these
activities on water quality and channel stability in Ozark streams. This study is the first to
recognize and explain the presence of legacy floodplain and channel deposits in the Mark Twain
National Forest of the Ozark Highlands. These deposits represent a significant long-term source
of stored fine-grained sediment and, along with human channelization practices since the 1950s,

have led to historical channel change from multiple-thread to single-threaded channel planforms.
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APPENDICES

Appendix A. Physical Characteristics of Valley Cross-section Storage Sites

. Ad Elevation Chan Max Reach Vw

Location R-km (km?) (m) width  depth slope (m)
(m)  (m)

Cemetery
Road 36.6 8 245.7 29.1 1.0 0.16 336
MBB2 26.0 48 115.3 74.1 2.9 0.38 158
NatConl 24.0 53 184.6 28.3 3.1 0.27 200
NatCon2 23.3 21 181.2 18.5 1.0 0.31 200
UNA 18.5 103 163.8 15.9 1.8 0.25 68
Barnes
Head-cut 35.8 9 239.8 34.9 0.9 0.55 280
Upstream
BH 25.0 52 187.5 33.6 0.9 0.61 97
Bristol RU 22.0 87 176.2 23.8 0.9 0.31 230
LBB101718 4.0 183 121.8 59.0 1.4 0.28 424
GSH site 32.8 24 226.3 30.8 0.6 0.61 80
UBB Farm 38.0 2 255.2 27.0 0.6 0.75 65
Ford 10.3 161 137.6 14.9 1.6 0.28 500
Rkm 39 39.0 2 263.2 40.8 0.7 0.85 126
LBB Pasture 4.0 183 121.4 25.8 1.3 0.28 424
UBB Gauge 37.8 3 2543 16.0 0.8 0.71 170
Above Farm 38.2 2 256.6 29.1 0.2 0.72 60
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Appendix D. Fine-grained Storage Depths and Stratigraphic Boundaries Identified within
Valley Cross-sections.
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Appendix D-1. Cross-section with depth to fine-grained sediment refusal and the depth of
the tree cored for sedimentation rates at river kilometer 39.
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Appendix D-2. Cross-section with depth to fine-grained sediment refusal and the depth of
the tree cored for sedimentation rates at Above Farm site.
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Appendix D-3. Cross-section with depth to fine-grained sediment refusal and depth of old
growth pine stump at upper Big Barren Farm site.
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Appendix D-4. Cross-section with depth to fine-grained sediment refusal at upper Big Barren
Head-cut site.
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Appendix D-5. Cross-section with stratigraphic boundary information at Cemetery Road site.
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Appendix D-6. Cross-section with fine-grained depth to refusal information with stratigraphic
boundary information at German Shepard site.
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Appendix D-7. Cross-section with fine-grained depth to refusal information and stratigraphic
boundary information at middle Big Barren site 2.
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Appendix D-8. Cross-section with fine-grained depth to refusal information at upstream of Bearpen
Head-cut site.
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Appendix D-9. Cross-section floodplain and terrace soil cores and stratigraphic boundary
information at Nature conservancy site 1.
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Appendix D-10. Cross-section with fine-grained depth to refusal information at Bristol road site.
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Appendix D-11. Cross-section with fine-grained depth to refusal and stratigraphic boundary
information at upper Natural Area site.
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Appendix D-12. Cross-section with fine-grained depth to refusal information at Ford site.
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Appendix D-13. Cross-section floodplain and terrace soil cores and stratigraphic boundary
information at lower Big Barren pasture site.
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